Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24120088-7    https://doi.org/10.11896/cldb.24120088
  无机非金属及其复合材料 |
K2O-PbO-SiO2系古玻璃的复仿制及组成对玻璃结构和性能的影响研究
赵婷, 翟佳豪, 朱建锋, 秦毅*
陕西科技大学材料科学与工程学院(文物保护科学与技术学院),地下文物保护材料与技术教育部重点实验室,陕西省无机材料绿色制备与功能化重点实验室,西安 710021
Preparation of K2O-PbO-SiO2 Ancient Glass and the Effect of Composition on Its Microstructure and Properties
ZHAO Ting, ZHAI Jiahao, ZHU Jianfeng, QIN Yi*
Shaanxi Key Laboratory of Green Preparation and Functionalization of Inorganic Materials, Key Laboratory of Materials and Technology for Underground Cultural Relics Protection, Ministry of Education, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
下载:  全 文 ( PDF ) ( 18899KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以碳酸钾(K2CO3)、四氧化三铅(Pb3O4)以及二氧化硅(SiO2)为主体原料,氧化铜(CuO)作为着色剂,氟化钙(CaF2)作为助熔剂,设计了不同m(SiO2)/m(CaO+CaF2)比值的玻璃成分。采用熔融-浇注成型法成功实现了K2O-PbO-SiO2系古代玻璃的复仿制。在此基础上,研究了m(SiO2)/m(CaO+CaF2)比值保持不变时,CaF2含量对该体系古代玻璃物相组成、网络结构、微观形貌、色度及显微硬度的影响规律;阐明了CaF2在古代玻璃中的作用机制。结果表明,当m(SiO2)/m(CaO+CaF2)比值为4.252时,复仿制玻璃最接近古代玻璃。在控制比值为4.252不变的基础上,当CaF2含量小于6%(质量分数)时,CaF2充当助熔剂,玻璃呈透明状,且颜色为深蓝色;当 CaF2含量大于6%时,Si-O键被破坏,玻璃体系的化学稳定性下降,成核位点增多,析出细小的CaF2晶体,玻璃透光率下降,此时玻璃偏绿色;其硬度随CaF2含量的增加略有降低,从5.0 GPa降低至4.25 GPa。结合优良遮光性、外观颜色及合适的硬度要求,CaF2含量为6%时效果最佳。这对于K2O-PbO-SiO2系古玻璃的科学认知及后续的保护修复具有重要的理论和实践意义。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
赵婷
翟佳豪
朱建锋
秦毅
关键词:  K2O-PbO-SiO2  复仿制  氟化钙(CaF2)  古代玻璃  文物保护    
Abstract: Glass compositions with varying m(SiO2)/m(CaO+CaF2) ratios were designed using potassium carbonate (K2CO3), lead tetraoxide (Pb3O4), and silicon dioxide (SiO2) as the primary raw materials, copper oxide (CuO) as the colorant, and calcium fluoride (CaF2) as the flux. The replica of ancient glass of the K2O-PbO-SiO2 system has been successfully realized by the melt-cast molding method. On this basis, the influence of CaF2 content on the physical phase composition, network structure, microscopic morphology, chromaticity, and microhardness of the ancient glass of this system was investigated under a constant m(SiO2)/m(CaO+CaF2) ratio, and the mechanism of the role of CaF2 in the ancient glass was elucidated. The results show that the replica glass is closest to the ancient glass when the m(SiO2)/m(CaO+CaF2) ratio is 4.252. At this case, when the CaF2 content is less than 6%, CaF2 acts as a flux, and the glass is transparent and dark blue, and when the CaF2 content is greater than 6%, the Si-O bond is destroyed, the chemical stability of the glass system decreases, the number of nuc-leation sites increases, and fine CaF2 crystals are precipitated, and the glass transmittance decreases, at this time the glass is greenish; Its hardness decreases slightly with the increase of CaF2 content, from 5.0 GPa to 4.25 GPa. Combined with the requirements of excellent light shading property, appearance color, and suitable hardness, the optimal CaF2 content is 6%. The findings are of great theoretical and practical significance for the scientific knowledge of the K2O-PbO-SiO2 system ancient glass and subsequent conservation and restoration.
Key words:  K2O-PbO-SiO2    reproduction    calcium fluoride (CaF2)    ancient glass    heritage conservation
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TQ17  
基金资助: 陕西省教育厅重点科研计划项目(23JY010);陕西省自然科学基础研究计划项目(2022JM-202);中央指导地方科技发展基金项目(2024ZY-JCYJ-04-06);陕西科技大学博士科研启动基金项目(BJ16-20;BJ16-21)
通讯作者:  *秦毅,博士,教授,硕士研究生导师。目前从事高性能热电材料、光子结构色颜料、可溶解铝合金研究;热电效应在文物保护及环境控制中的应用研究;壁画文物加固材料研究。qinyi@sust.edu.cn   
作者简介:  赵婷,博士,副教授,硕士研究生导师。目前从事生物牙科玻璃陶瓷材料的强韧化研究;古代玻璃的复仿制研究;壁画文物颜料层认知、劣化机理及加固材料研究。
引用本文:    
赵婷, 翟佳豪, 朱建锋, 秦毅. K2O-PbO-SiO2系古玻璃的复仿制及组成对玻璃结构和性能的影响研究[J]. 材料导报, 2025, 39(24): 24120088-7.
ZHAO Ting, ZHAI Jiahao, ZHU Jianfeng, QIN Yi. Preparation of K2O-PbO-SiO2 Ancient Glass and the Effect of Composition on Its Microstructure and Properties. Materials Reports, 2025, 39(24): 24120088-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120088  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24120088
1 Gan F X, Huang Z F, Xiao B R. Journal of Silicate, 1978(Z1), 99(in Chinese).
干福熹, 黄振发, 肖炳荣. 硅酸盐学报, 1978(Z1), 99.
2 Gan F X. Journal of Silicate, 2004, 32(2), 182(in Chinese).
干福熹. 硅酸盐学报, 2004, 32(2), 182.
3 Seligman C G, Ritchie P D, Beck H C, et al. Nature, 1936, 138(3495), 721.
4 Beck H C, Seligman C G. Nature, 1934, 133(6), 982.
5 Gan F X, Cheng H S, Li Q H. Science in China, Series E, 2007, 37(3), 382(in Chinese).
干福熹, 承焕生, 李青会. 中国科学:E辑, 2007, 37(3), 382.
6 Gan F, Robertl B, Tian S. Ancient glass research along the silk road. World Scientific Publishing Co. Pte. Ltd, UK, 2009, pp. 41.
7 Li F, Li Q H, Gan F X, et al. Journal of Silicates, 2005, 33(5), 581(in Chinese).
李飞, 李青会, 干福熹, 等. 硅酸盐学报, 2005, 33(5), 581.
8 Li Q H, Gan F X, Gu D H. Studies in the History of Natural Sciences, 2007, 26(2), 234(in Chinese).
李青会, 干福熹, 顾冬红. 自然科学史研究, 2007, 26(2), 234.
9 Gan F X, Zhao H X, Li Q H, et al. Jianghan Archaeology, 2010(2), 108(in Chinese).
干福熹, 赵虹霞, 李青会, 等. 江汉考古, 2010(2), 108.
10 Cui J F, Wu X H, Tan Y H, et al. Journal of Silicates, 2009, 37(11), 1909(in Chinese).
崔剑锋, 吴小红, 谭远辉, 等. 硅酸盐学报, 2009, 37(11), 1909.
11 Shi M G, He O L, Wu Z D, et al. Silicate Bulletin, 1986(1), 23(in Chinese).
史美光, 何欧里, 吴宗道, 等. 硅酸盐通报, 1986(1), 23.
12 Dong J Q, Li Q H, Gan F X, et al. Progress of Materials in China, 2012, 31(11), 9(in Chinese).
董俊卿, 李青会, 干福熹, 等. 中国材料进展, 2012, 31(11), 9.
13 Tian C. Heritage Science, 2021, 9(1), 61.
14 Verweij H,Konijnendijk W L. Journal of the American Ceramic Society, 1976, 59(11), 517.
15 Zhou Y, Jin Y, Wang K, et al. Heritage Science, 2019, 7(1), 56.
16 Wang C Y, Li S J, Tao Y. Glass, 2017, 44(5), 3(in Chinese).
王承遇, 李松基, 陶瑛. 玻璃, 2017, 44(5), 3.
17 Yi J L, Tu S J. Journal of Silicate, 1984(4), 20(in Chinese).
易家良, 涂淑进. 硅酸盐学报, 1984(4), 20.
18 Zhang Y, Jia C, Sun O, et al. Conservation and Archaeological Science, 2021, 33(1), 73(in Chinese).
张瑜, 贾翠, 孙鸥, 等. 文物保护与考古科学, 2021, 33(1), 73.
19 Kan Y H. Analysis of glass technology unearthed from the late Yuan and early Ming glass workshops in Boshan, Shandong. Master’s Thesis, Shandong University, China, 2022(in Chinese).
阚颖浩. 山东博山元末明初玻璃作坊出土玻璃科技分析. 硕士学位论文, 山东大学, 2022.
20 Christian R. Chemistry of Materials, 2005, 17(23), 5843.
21 Imanieh M H, Yekta B E, Marghussian V, et al. Solid State Sciences, 2013(17), 76.
22 Stoica M, Patzig C, Bocker C, et al. Journal of Materials Science, 2017, 52(23), 13390.
23 Wang Z, Cheng L. Journal of Materials Science, 2015, 50(11), 4066.
24 Lu F J, Li C C, Ye J Y, et al. Silicate Bulletin, 2024, 43(6), 2206(in Chinese).
逯凡杰, 李长成, 叶家元, 等. 硅酸盐通报, 2024, 43(6), 2206.
25 Qin J, Cui C, Cui X Y, et al. Journal of Artificial Crystals, 2016, 45(5), 1153(in Chinese).
秦娟, 崔崇, 崔晓昱, 等. 人工晶体学报, 2016, 45(5), 1153.
26 Mahdy E A, Ibrahim S. Journal of Molecular Structure, 2012, 1027(1), 81.
27 Dantas N, Ayta W, Silva A, et al. Spectrochimica Acta Part A, 2011, 81(1), 140.
28 Kim G H, Sohn I. Journal of Non-Crystalline Solids, 2012, 358(12), 1530.
29 Okuno M, Zotov N, Schmücker M, et al. Journal of Non-Crystalline Solids, 2005, 351(12), 1032.
30 Zeng H R, Ruan Y Z, Yu Y, et al. Silicate Bulletin, 2008, 27(2), 345(in Chinese).
曾华瑞, 阮玉忠, 于岩, 等. 硅酸盐通报, 2008, 27(2), 345.
[1] 曹颐戬,王聪,王丽琴. 仿生超疏水材料及其在文物保护中的应用综述[J]. 材料导报, 2020, 34(3): 3178-3184.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed