Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24110225-7    https://doi.org/10.11896/cldb.24110225
  高分子与聚合物基复合材料 |
Fe3O4-ZIF-67@碳纳米纤维复合材料的吸波性能与机制
颜贵龙1,*, 涂俊2, 孙瑞翎1, 明潇然1, 程金波1, 王犁1, 李振宇1, 武元鹏1
1 西南石油大学新能源与材料学院,成都 610500
2 郑州大学材料科学与工程学院,郑州 450001
Electromagnetic Wave Absorbing Behavior and Mechanism of Fe3O4-ZIF-67@C Composite Nanofibers
YAN Guilong1,*, TU Jun2, SUN Ruiling1, MING Xiaoran1, CHENG Jinbo1, WANG Li1, LI Zhenyu1, WU Yuanpeng1
1 School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China
2 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
下载:  全 文 ( PDF ) ( 16807KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电子设备的发展在方便人类生活的同时也带来了电磁辐射问题,为应对电磁辐射问题,吸波材料成为当下研究的热点。本工作采用水热法、静电纺丝法和高温碳化法制备了Fe3O4含量不同的一系列Fe3O4-ZIF-67@碳纳米纤维复合材料(Fe3O4-ZIF-67@C),复合材料的吸波机理主要包括介电损耗、偶极子极化和界面极化。当四氧化三铁(Fe3O4)质量分数为4%时,Fe3O4-ZIF-67@C材料的最小反射损耗为-52.15 dB(5.36 GHz处,厚度4.3 mm),最大有效吸收带宽达7.05 GHz(4.63~11.68 GHz,厚度3.5 mm)。因此,该纳米纤维复合材料具有优异的电磁波吸收性能和相对较大的有效吸收带宽,具有良好的应用潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
颜贵龙
涂俊
孙瑞翎
明潇然
程金波
王犁
李振宇
武元鹏
关键词:  四氧化三铁(Fe3O4)  纳米材料  静电纺丝  吸波材料  电磁辐射    
Abstract: The development of electronic devices has brought convenience to people's lives, but also caused the problem of electromagnetic radiation, which makes absorbing materials a hot topic in current research. In this study, a series of Fe3O4-ZIF-67@C composite nanofibers differing in Fe3O4 content were prepared by hydrothermal method, electrospinning and high-temperature carbonization. The absorption mechanisms of the materials were found to mainly entail dielectric loss, dipole polarization, and interface polarization. When the mass fraction of Fe3O4 was 4%, the Fe3O4-ZIF-67@C nanofibers exhibited a minimum reflective loss of -52.15 dB at 5.36 GHz and a thickness of 4.3 mm, and a maximum absorption bandwidth of 7.05 GHz (4.63—11.68 GHz) at a thickness of 3.5 mm, demonstrating an excellent electromagnetic wave absorption perfor-mance and a relatively wide effective absorption band, indicating promising application potential.
Key words:  Fe3O4    nanomaterial    electrospinning    electromagnetic wave absorbing material    electromagnetic radiation
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  O441.4  
基金资助: 四川省自然科学基金(2024NSFC1038);西南石油大学自然科学“启航计划”项目(2022QHZ011)
通讯作者:  *颜贵龙,博士,西南石油大学新能源与材料学院硕士研究生导师。主要从事纳米纤维领域的研究工作。guilong.yan@swpu.edu.cn   
引用本文:    
颜贵龙, 涂俊, 孙瑞翎, 明潇然, 程金波, 王犁, 李振宇, 武元鹏. Fe3O4-ZIF-67@碳纳米纤维复合材料的吸波性能与机制[J]. 材料导报, 2025, 39(22): 24110225-7.
YAN Guilong, TU Jun, SUN Ruiling, MING Xiaoran, CHENG Jinbo, WANG Li, LI Zhenyu, WU Yuanpeng. Electromagnetic Wave Absorbing Behavior and Mechanism of Fe3O4-ZIF-67@C Composite Nanofibers. Materials Reports, 2025, 39(22): 24110225-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110225  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24110225
1 Liang C Y, Liu C Y, Wang H, et al. Journal of Materials Chemistry A, 2014, 2(39), 16397.
2 Chen Y W, Zhang H Y, Zeng G X. Carbon, 2018, 140, 494.
3 Wang J W, Wang B B, Feng A L, et al. Journal of Alloys and Compounds, 2020, 834, 155092.
4 Wang J X, Yang J F, Yang J, et al. Journal of Alloys and Compounds, 2021, 876, 160126.
5 Ren R Y, Guo J C, Song H, et al. Materials Today Bio, 2023, 19, 100590.
6 Pan J L, Zhang R J, Ling J, et al. Journal of Materiomics, 2021, 7(5), 957.
7 Qian C Y, Liang X H, Wu M, et al. Nanomaterials, 2022, 12(20), 3699.
8 Yin Y C, Liu X F, Wei X J, et al. ACS Applied Materials & Interfaces, 2016, 8(50), 34686.
9 Li B D, Zeng Z H, Qiao J, et al. ACS Applied Nano Materials, 2022, 5(8), 11617.
10 Wang G Z, Gao Z, Wan G P, et al. Nano Research, 2014, 7(5), 704.
11 Lu B, Huang H, Dong X L, et al. Journal of Applied Physics, 2008, 104(11), 114313.
12 Chen X L, Wang W, Shi T, et al. Carbon, 2020, 163, 202.
13 Liu H G, Wang Z, Yang Y J, et al. Journal of Materials Science & Technology, 2022, 130(35), 75.
[1] 王腾腾, 魏晓童, 刘森, 田爽, 周通. 静电纺丝电极材料在钾基储能器件中的应用[J]. 材料导报, 2025, 39(9): 24020122-8.
[2] 王九江, 李大武. 基于纳米荧光碳点可视化显现潜在手印的研究进展[J]. 材料导报, 2025, 39(9): 24020140-13.
[3] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[4] 史豪, 王雅, 赵尉伶, 罗艳丽, 杨方源, 周金龙. 表面活性剂改性的磁性纳米颗粒对重金属吸附特征[J]. 材料导报, 2025, 39(6): 23090040-8.
[5] 赵伟馨, 彭孔浩, 武玥, 郭文, 高鹤然, 张凌燕, 彭微, 李淑荣, 孟佩俊. PEI-NaGdF4:Yb3+,Tm3+稀土掺杂上转换纳米材料的制备及性能[J]. 材料导报, 2025, 39(5): 24120175-7.
[6] 王志航, 白二雷, 黄河, 杜宇航, 任彪. 碳纤维增强水泥基材料界面改性研究进展[J]. 材料导报, 2025, 39(5): 24020133-9.
[7] 张皓天, 刘丽, 刘峻彤, 李扬动. 基于常见金属及金属氧化物纳米材料在手印显现中的应用进展[J]. 材料导报, 2025, 39(22): 24110191-13.
[8] 陈彦昊, 彭艳, 刘惠军, 王胜男, 杨艳玲, 代方银, 李智. ART-EGCG序贯给药静电纺丝纤维的制备及协同抗肝癌效果研究[J]. 材料导报, 2025, 39(20): 24080226-6.
[9] 高兆辉, 唐茂勇, 迟建卫, 章天歌. 碳包覆氮化钒/碳(VN/C)复合纳米材料的制备以及作为超级电容器电极的应用[J]. 材料导报, 2025, 39(19): 24100197-7.
[10] 王伟超, 汪刘应, 刘顾, 黄洁, 葛超群. 气凝胶吸波材料的研究进展[J]. 材料导报, 2025, 39(18): 24090084-9.
[11] 夏梓文, 梁平, 冯扬, 杨伟业, 彭鸿雁, 赵世华. 不同水热制备条件对ZnO纳米材料性能的影响[J]. 材料导报, 2025, 39(16): 24070151-12.
[12] 张育新, 邱慕寒, 李默涵. 纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展[J]. 材料导报, 2025, 39(15): 25030074-11.
[13] 陈飞勇, 刘坤, 李文祚, 陈倩勋, 李淑英, 宋扬. 静电纺丝纤维材料在太阳能海水淡化领域的应用进展[J]. 材料导报, 2025, 39(14): 24060040-8.
[14] 郭首政, 邢东. 纳米材料在木材超疏水领域的应用[J]. 材料导报, 2025, 39(14): 24050202-10.
[15] 王志航, 白二雷, 刘俊良, 周俊鹏, 任彪. 碳纤维及碳纳米材料改性水泥基材料电磁屏蔽及吸波性能研究进展[J]. 材料导报, 2025, 39(13): 24030248-9.
[1] LIU Diqiang, JIA Jiangang, GAO Changqi, WANG Jianhong. Preparation of Raney-Ni/Al2O3 Powder Composites by De-alloying of Mechanochemical Synthesized Ni2Al3/Al2O3 Powders[J]. Materials Reports, 2018, 32(6): 957 -960 .
[2] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[3] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[4] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[5] HUANG Jianfeng, WANG Caiwei, LI Jiayin, CAO Liyun, ZHU Dongyue, XI Ting. Advances in Carbon-based Anode Materials for Sodium Ion Batteries[J]. Materials Reports, 2017, 31(21): 19 -23 .
[6] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[7] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[8] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[9] HAN Zhiyong, QIU Zhenzhen, SHI Wenxin. Effect of Surface Modification of Bonding Layers by High Current Pulsed Electron Beam on Thermal Shock Failure and Residual Stress of Thermal Barrier Coatings[J]. Materials Reports, 2018, 32(24): 4303 -4308 .
[10] YUAN Teng, LIANG Bin, HUANG Jiajian, YANG Zhuohong, SHAO Qinghui. Effect of Shell Thickness on Morphology and Opacity Ability of Hollow Styrene
Acrylic Latex Particles
[J]. Materials Reports, 2019, 33(4): 724 -728 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed