Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24080226-6    https://doi.org/10.11896/cldb.24080226
  高分子与聚合物基复合材料 |
ART-EGCG序贯给药静电纺丝纤维的制备及协同抗肝癌效果研究
陈彦昊1,2,3,4, 彭艳1,3,4, 刘惠军1, 3, 4, 王胜男1,3,4, 杨艳玲1,3,4, 代方银1,2,3,4,*, 李智1,3,4
1 西南大学蚕桑纺织与生物质科学学院,重庆 400715
2 西南大学资源昆虫高效养殖与利用全国重点实验室,重庆 400715
3 西南大学重庆市生物质纤维材料与现代纺织工程技术研究中心,重庆 400715
4 西南大学农业农村部蚕桑生物学与遗传育种重点实验室,重庆 400715
Preparation of Electrospun Fibers for Sequential Administration of ART-EGCG and Its Synergistic Anti-liver Cancer Effect
CHEN Yanhao1,2,3,4, PENG Yan1,3,4, LIU Huijun1,3,4, WANG Shengnan1,3,4, YANG Yanling1,3,4, DAI Fangyin1,2,3,4,*, LI Zhi1,3,4
1 College of Sericulture, Textile and Biomass Sciences, Southwest University, Chongqing 400715, China
2 State Key Laboratory of Resource Insects, Southwest University, Chongqing 400715, China
3 Chongqing Engineering Technology Research Center of Biomaterial Fiber and Modern Textile, Southwest University, Chongqing 400715, China
4 Key Laboratory of Sericulture Biology and Genetic Breeding, Ministry of Agriculture, Southwest University, Chongqing 400715, China
下载:  全 文 ( PDF ) ( 14036KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为抑制手术后肝癌复发,常通过局部给药的方式抑制癌细胞生长及肿瘤形成。基于青蒿素(ART)和表没食子儿茶素没食子酸酯(EGCG)两种药物的抗癌机制,研究二者对肝癌细胞的协同抑制作用。结果表明,序贯给药的最优顺序为ART-EGCG,最优给药时间为15 h+9 h,最优ART、EGCG给药比例为1∶1,最优给药浓度均为25 μg/mL,此时二者具有很好的协同抑制肝癌细胞作用。基于二者协同抑制作用的给药方式,采用同轴静电纺丝技术,以15%(质量分数)PLGA和ART混合作为皮层纺丝液,10%(质量分数)PEG和EGCG混合作为芯层纺丝液,设计并制备出具有皮芯结构的载药静电纺丝纤维膜,其可以有效调控ART和EGCG的序贯释放,协同抑制肝癌细胞的生长及增殖,在24 h时,该载药静电纺丝膜对HepG2细胞的抑制率为(38.66±4.12)%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈彦昊
彭艳
刘惠军
王胜男
杨艳玲
代方银
李智
关键词:  同轴静电纺丝  序贯给药  青蒿素(ART)  表没食子儿茶素没食子酸酯(EGCG)  抗癌药物    
Abstract: In order to inhibit the recurrence of liver cancer after surgery, local administration is often used to inhibit the growth of cancer cells and tumor formation. Based on the anti-cancer mechanism of artemisinin (ART) and epigallocatechin gallate (EGCG), the synergistic inhibitory effect of the two drugs on hepatocellular carcinoma cells was studied, and the results showed that the optimal sequence of sequential administration was ART-EGCG, the optimal administration time was 15 h+9 h, the optimal dosing ratio of ART and EGCG was 1∶1, and the optimal administration concentration was 25 μg/mL, which had a good synergistic inhibitory effect on hepatocellular carcinoma cells. Based on the synergistic inhibition effect of the two drugs’ delivery, coaxial electrospinning technology was used to design and fabricate the nanofibrous membrane with core-shell structure by mixing 15wt% PLGA and ART as the cortexal spinning solution, and 10wt% PEG and EGCG mixed as the core spinning solution. The prepared drug-loaded electrospun nanofibrous membrane with core-shell structure could effectively regulate the sequential release of ART and EGCG, and synergistically inhibit the growth and proliferation of hepatocellular carcinoma cells. The inhibition rate of the prepared drug-loaded electrospun membrane with core-shell structure on HepG2 cells was (38.66±4.12)% at 24 h.
Key words:  coaxial electrospinning    sequential administration    artemisinin    epigallocatechin gallate(EGCG)    anticancer drugs
发布日期:  2025-10-27
ZTFLH:  R73  
  Q81  
基金资助: 重庆市自然科学基金创新群体项目(cstc2021jcyj-cxtt005)
通讯作者:  *代方银,博士,二级教授,博士研究生导师。目前主要研究方向为家蚕种质资源与分子育种、实验生物系统与疾病模型和蚕丝生物材料创新及应用等。fydai@swu.edu.cn   
作者简介:  陈彦昊,西南大学蚕桑纺织与生物质科学学院硕士研究生,在代方银教授的指导下进行研究。目前主要研究方向为生物医用材料。
引用本文:    
陈彦昊, 彭艳, 刘惠军, 王胜男, 杨艳玲, 代方银, 李智. ART-EGCG序贯给药静电纺丝纤维的制备及协同抗肝癌效果研究[J]. 材料导报, 2025, 39(20): 24080226-6.
CHEN Yanhao, PENG Yan, LIU Huijun, WANG Shengnan, YANG Yanling, DAI Fangyin, LI Zhi. Preparation of Electrospun Fibers for Sequential Administration of ART-EGCG and Its Synergistic Anti-liver Cancer Effect. Materials Reports, 2025, 39(20): 24080226-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24080226  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24080226
1 Sharifi-Rad M, Pezzani R, Redaelli M, et al. Molecules, 2020, 25(3), 467.
2 Wang H G, Cai K, Han X L. Acta Universitatis Medicinalis Anhui, 2019, 54(10), 1540(in Chinese).
王惠国, 蔡珂, 韩鑫龙. 安徽医科大学学报, 2019, 54(10), 1540.
3 Efferth T. Biochemical Pharmacology, 2017, 139, 56.
4 Chou Shih-Feng, Carson Daniel, Woodrow Kim A. Journal of Controlled Release, 2015, 220, 584.
5 Feng B Y. Special Wild Economic Animal and Plant Research 2020, 42(1), 6(in Chinese).
冯冰玉. 特产研究, 2020, 42(1), 6.
6 Zhao X, Zhao J W, Lin Z Y, et al. Colloids and Surfaces B-Biointerfaces, 2015, 130, 1.
7 Li G D. Academic Journal of Second Military Medical University, 1998(3), 98(in Chinese).
李国栋. 第二军医大学学报, 1998(3), 98.
8 Liao Y J, Hu C P. Medical Science Journal of Central South China, 2012, 10(2), 132(in Chinese).
廖音娟, 胡长平. 中南医药, 2012, 10(2), 132.
9 Zhang Y. Chinese Journal of Cancer Biotherapy, 2014, 21(1), 38(in Chinese).
张勇. 中国肿瘤生物治疗杂志, 2014, 21(1), 38.
10 Li X Y, Wu Z P, Wang M X. Chinese Herbal Medicines, 2019, 50(13), 3217(in Chinese).
李晓阳, 吴志平, 王梦馨. 中草药, 2019, 50(13), 3217.
11 Chen J, Wang X B, Zhang Y, et al. Biomaterials, 2021, 266, 120457.
12 Guo J P. Journal of Shanxi Medical University, 2017, 48(2), 97(in Chinese).
郭佳培. 山西医科大学学报, 2017, 48(2), 97.
13 Nishikawa T, Nakajima T, Moriguchi M, et al. Journal of Hepatology, 2006, 44(6), 1074.
14 Xu X Y, Zhao C N, Cao S Y, et al. Critical Reviews in Food Science and Nutrition, 2020, 60(10), 1693.
15 Xue J J, Wu T, Dai Y Q, et al. Chemical Reviews, 2019, 119(8), 5298.
16 He C G, Gao Y J, Li Z. China Biotechnology, 2007(2), 46(in Chinese).
何晨光, 高永娟, 赵莉. 中国生物工程杂志, 2007(2), 46.
17 Shi Y L, Zhang J H, Xu S X, et al. Journal of Biomaterials Science-Polymer Edition, 2013, 24(5), 551.
18 Li X L, Xu F N, He Y, et al. Advanced Functional Materials, 2020, 30(45), 2004851.
19 Li X L, He Y, Hou J W, et al. Small, 2020, 16(9), 1902262.
20 Bimonte S, Albino V, Piccirillo M, et al. Drug Design Development and Therapy, 2019, 13, 611.
21 Li J N, Xu W G, Li D, et al. ACS Nano, 2018, 12(7), 6685.
22 Chou T C. Cancer Research, 2010, 70(2), 440.
23 Volpe-Zanutto F, Ferreira L T, Permana A D, et al. Journal of Controlled Release, 2021, 333, 298.
24 Wang J, Windbergs M. European Journal of Pharmaceutical Sciences, 2018, 124, 71.
25 Bonadies I, Maglione L, Ambrogi V, et al. European Polymer Journal, 2017, 89, 211.
[1] 吴天怡, 龚妍春, 李资玲, 李玉萍, 熊向源. 抗癌纳米药物共递送系统的应用研究[J]. 材料导报, 2020, 34(Z1): 516-522.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed