Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24110051-8    https://doi.org/10.11896/cldb.24110051
  无机非金属及其复合材料 |
Ni-MOF/GNS@Ni/Mn-LDH电极材料的电化学性能研究
马应霞1,2,*, 李静1,2, 孟田力1,2, 常士范1,2, 李文静1,2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050
2 兰州理工大学材料科学与工程学院,兰州 730050
Research on Electrochemical Properties of Ni-MOF/GNS@Ni/Mn-LDH Electrode Materials
MA Yingxia1,2,*, LI Jing1,2, MENG Tianli1,2, CHANG Shifan1,2, LI Wenjing1,2
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050, China
2 School of Materials Science & Engineering, Lanzhou University of Technology, Lanzhou 730050, China
下载:  全 文 ( PDF ) ( 25269KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属有机框架材料(MOF)结构可控,比表面积大,孔隙率高,其作为电极材料的研究备受关注,然而本征电导率低、易团聚、结构易坍塌等问题也限制了其电化学应用。作为一种碳材料,石墨纳米片(GNS)具有良好的导电性和结构稳定性,将镍基MOF(Ni-MOF)原位生长在GNS上构筑Ni-MOF/GNS,可以提高Ni-MOF的导电性、分散性和结构稳定性,但产物的比容量和功率密度较低。层状双金属氢氧化物(LDH)具有良好的氧化还原活性和阴离子交换性能,能够提供较高的比容量和功率密度。基于此,本工作采用溶剂热法将Ni/Mn-LDH原位引入Ni-MOF/GNS,并通过调控Ni(NO3)2·6H2O与Mn(NO3)2·4H2O的物质的量比、反应温度、反应时长,构筑了一系列Ni-MOF/GNS@Ni/Mn-LDH纳米杂化材料。研究结果表明,在最优条件下构筑的Ni-MOF/GNS@Ni/Mn-LDH于1.0 A/g电流密度下的比容量为1 102.0 C/g,其与活性炭组装的非对称超级电容器的功率密度为800.0 kW/kg,能量密度为15.3 Wh/kg。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
马应霞
李静
孟田力
常士范
李文静
关键词:  金属有机框架  电极材料  石墨纳米片  层状双金属氢氧化物    
Abstract: Metal-organic frameworks (MOFs) have attracted much attention as electrode materials due to the structural controllability, large specific surface area, and high porosity. However, MOFs have intrinsically low electrical conductivity, tendency to agglomerate, and structural instability, which limit their application as electrode materials. Graphite nanosheets (GNS) as one of carbon materials have the advantages of good conductivity and stable structure. By in situ growth of nickel MOFs (Ni-MOFs) on GNS, the electrical conductivity, dispersibility and structural stability of Ni-MOFs were improved. Nevertheless, the specific capacity and power density are relatively low. Layered double hydroxides (LDH) have good oxidation-reduction activity and anion exchange performance, which could provide high specific capacities and power densities. Hence, in this work, Ni/Mn-LDH was introduced into Ni-MOFs/GNS to construct a series of Ni-MOF/GNS@Ni/Mn-LDH nanohybrid materials using solvothermal method by adjusting the molar ratio of Ni(NO3)2·6H2O to Mn(NO3)2·4H2O, reaction temperature, and time length. The results showed that the Ni-MOF/GNS@Ni/Mn-LDH obtained at the optimal conditions exhibited a specific capacity of 1 102.0 C/g at the current density of 1.0 A/g. The asymmetric supercapacitors assembled by the aforementioned Ni-MOF/GNS@Ni/Mn-LDH and activated carbon had a power density of 800.0 kW/kg and an energy density of 15.3 Wh/kg.
Key words:  metal-organic frameworks    electrode material    graphite nanosheets    layered double hydroxide
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  TQ15  
基金资助: 甘肃省自然科学基金重点项目(23JRRA818)
通讯作者:  *马应霞,博士,兰州理工大学教授。主要从事功能高分子的合成以及有机/无机纳米杂化材料的构筑及性能研究。mayx2011818@163.com   
引用本文:    
马应霞, 李静, 孟田力, 常士范, 李文静. Ni-MOF/GNS@Ni/Mn-LDH电极材料的电化学性能研究[J]. 材料导报, 2025, 39(22): 24110051-8.
MA Yingxia, LI Jing, MENG Tianli, CHANG Shifan, LI Wenjing. Research on Electrochemical Properties of Ni-MOF/GNS@Ni/Mn-LDH Electrode Materials. Materials Reports, 2025, 39(22): 24110051-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110051  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24110051
1 Tafete G A, Abera M K, Thothadri G. Journal of Energy Storage, 2022, 48, 103938.
2 Carvalho J T, Cunha I, Coelho J, et al. ACS Applied Energy Materials, 2022, 5(10), 11987.
3 Liu J, Shakir I, Kang D J. Materials Letters, 2014, 119, 84.
4 Chen S, Wu B, Qian H, et al. Journal of Power Sources, 2019, 438, 227000.
5 Qiu Y, Wang Z, Jin M, et al. Electrochimica Acta, 2022, 424, 140622.
6 Chaichi A, Venugopalan G, Devireddy R, et al. ACS Applied Energy Materials, 2020, 3(6), 5693.
7 Hao C, Wang X, Wu X, et al. Applied Surface Science, 2022, 572, 151373.
8 Chu X, Meng F, Zhang W, et al. Nanotechnology, 2022, 33(20), 205403.
9 Shah S S, Niaz F, Ehsan M A, et al. Journal of Energy Storage, 2024, 79, 110152.
10 Wu G, Wu X, Zhu X, et al. ACS Nano, 2022, 16(7), 10130.
11 Dong K, Wang Y C, Deng J, et al. ACS Nano, 2017, 11(9), 9490.
12 Bhadra B N, Vinu A, Serre C, et al. Materials Today, 2019, 25, 88.
13 Connolly B M, Madden D G, Wheatley A E H, et al. Journal of the American Chemical Society, 2020, 142(19), 8541.
14 Jiang J, Furukawa H, Zhang Y B, et al. Journal of the American Chemical Society, 2016, 138(32), 10244.
15 Teo W L, Zhou W, Qian C, et al. Materials Today, 2021, 47, 170.
16 Tian D, Song N, Zhong M, et al. ACS Applied Materials & Interfaces, 2020, 12(1), 1280.
17 Li C, Liu J, Zhang K, et al. Angewandte Chemie, 2021, 133(25), 14257.
18 Xu X, Tang J, Qian H, et al. ACS Applied Materials & Interfaces, 2017, 9(44), 38737.
19 Sun S, Wang Y, Chen L, et al. Colloids and Surfaces A, 2022, 643, 128802.
20 He F, Hu Z, Liu K, et al. Journal of Solid State Electrochemistry, 2015, 19(2), 607.
21 Li S, Mao J. Journal of Electronic Materials, 2018, 47(9), 5410.
22 Wang J W, Meng T L, Ma Y X, et al. Diamond and Related Materials, 2023, 139, 110281.
23 Cao Y, Zheng D, Zhang F, et al. Journal of Materials Science & Technology, 2022, 102, 232.
24 Wu X, Huang B, Wang Q, et al. Chemical Engineering Journal, 2020, 380, 122456.
25 Xu L, Yuan B, Min L, et al. International Journal of Hydrogen Energy, 2022, 47(35), 15583.
26 Zhou Y, Li J, Yang Y, et al. Journal of Alloys and Compounds, 2019, 788, 1029.
27 Huang X, Yang R, Yin H, et al. Journal of Energy Storage, 2023, 74, 109319.
28 Shakeel M, Arif M, Yasin G, et al. Applied Catalysis B, 2019, 242, 485.
29 Li W, Li Y, Meng Q, et al. Materials Research Bulletin, 2020, 129, 110889.
30 Zhang Y, Wang B, Lv S, et al. Sensors and Actuators B, 2022, 361, 131736.
31 Yang M, Ge W, Liu Z, et al. Fuel, 2024, 356, 129626.
32 Yang M, Liu Y, Ge W, et al. Colloids and Surfaces A, 2023, 665, 131226.
33 Liu Y, Cao X, Cui L, et al. Journal of Power Sources, 2019, 437, 226897.
34 Chen L, Zhao X, Tian G, et al. Materials Letters, 2023, 334, 133698.
35 Wang S, Jiang W, Wu J, et al. Journal of Alloys and Compounds, 2022, 924, 166391.
36 Ayiania M, Smith M, Hensley A J R, et al. Carbon, 2020, 162, 528.
37 Tian K, Wang J, Cao L, et al. Nature Communications, 2020, 11(1), 3884.
38 Nartova A, Dmitrachkov A, Cholach A. Applied Surface Science, 2025, 681, 161477.
39 Wang J W, Ma Y X, Kang X Y, et al. Journal of Solid State Chemistry, 2022, 309, 122994.
40 Ouyang L, Hsiao C H, Chen Y C, et al. Surfaces and Interfaces, 2022, 28, 101574.
[1] 王腾腾, 魏晓童, 刘森, 田爽, 周通. 静电纺丝电极材料在钾基储能器件中的应用[J]. 材料导报, 2025, 39(9): 24020122-8.
[2] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[3] 冯振, 饶韫诚, 王伟慧, 郑先锋. 燃料电池用双原子铬金属有机框架基阴极材料的计算设计[J]. 材料导报, 2025, 39(22): 24110177-5.
[4] 杨瀚, 刘国柱, 魏轶聃, 赵伟, 魏应强, 周颖, 隋志远, 刘美杰, 尤兴宇, 魏敬和. 面向存储和神经形态计算应用的CBRAM发展综述[J]. 材料导报, 2025, 39(21): 24100167-12.
[5] 王相雅, 周琦, 冉奋. 面向植入式生物电子的PEDOT基电极材料[J]. 材料导报, 2025, 39(20): 24050069-13.
[6] 孙淑敏, 雷海波, 吕署虎, 王培远, 曹霞. 水系铵离子电池研究进展[J]. 材料导报, 2025, 39(19): 25020072-9.
[7] 高兆辉, 唐茂勇, 迟建卫, 章天歌. 碳包覆氮化钒/碳(VN/C)复合纳米材料的制备以及作为超级电容器电极的应用[J]. 材料导报, 2025, 39(19): 24100197-7.
[8] 白京陇, 元丽华, 戴怡乐, 赵继威, 贺艳霞, 魏智强. 金属有机框架衍生的碳包覆二硫化钴多面体材料的电化学性能研究[J]. 材料导报, 2025, 39(16): 24090099-8.
[9] 张育新, 邱慕寒, 李默涵. 纳米材料复合水凝胶及气凝胶在摩擦电纳米发电机中的研究进展[J]. 材料导报, 2025, 39(15): 25030074-11.
[10] 王逸飞, 张月, 赵鹏程, 由岫. 染料负载型MOFs复合材料用作发光中心材料的研究进展[J]. 材料导报, 2025, 39(12): 24060108-12.
[11] 孙文浩, 田君, 高洪波, 刘娜, 张锟, 梁晓嫱, 王聪杰, 王浩辰. 钠离子电池关键材料的热行为研究新进展[J]. 材料导报, 2025, 39(11): 24070213-11.
[12] 井文昌, 张志鸿, 刘香琛, 吴云翼, 李宝让. 新型液态金属电池材料体系及其相关技术的研究与进展[J]. 材料导报, 2025, 39(1): 23090098-17.
[13] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[14] 李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
[15] 王洪雷, 牛彩云, 朱宏跃, 李晓明, 周丹, 孙志刚, 胡季帆, 杨昌平. NiFe2O4/rGO电极材料的制备及电催化HMF氧化性能研究[J]. 材料导报, 2024, 38(14): 23110252-6.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed