Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24110044-8    https://doi.org/10.11896/cldb. 24110044
  高分子与聚合物基复合材料 |
原位聚合SAP用于半干旱土遗址根部掏蚀修补实验研究
张一凡1, 黎淼1, 郑尧1, 刘森彪1, 程卓越1, 罗宏杰1,2, 李建西3, 闫宏彬4, 朱建锋1,*
1 陕西科技大学材料科学与工程学院,文物保护科学与技术学院,地下文物保护材料与技术教育部重点实验室,西安 710021
2 上海大学文化遗产保护基础科学研究院,上海 200444
3 陕西省考古研究院,西安 710054
4 云冈研究院,山西 大同 037004
Experimental Research on Basal Sapping Repair in Semiarid Earthen Sites with In-situ Polymerization SAP
ZHANG Yifan1, LI Miao1, ZHENG Yao1, LIU Senbiao1, CHENG Zhuoyue1, LUO Hongjie1,2, LI Jianxi3, YAN Hongbin4, ZHU Jianfeng1,*
1 School of Materials Science and Engineering, School of Cultural Relics Protection Science and Technology, Key Laboratory of Underground Cultural Relics Protection Materials and Technology, Ministry of Education, Shaanxi University of Science and Technology, Xi ’an 710021, China
2 Institute for the Conservation of Cultural Heritage, Shanghai University, Shanghai 200444, China
3 Shaanxi Academy of Archaeology, Xi’an 710054, China
4 Yungang Research Institute, Datong 037004, Shanxi, China
下载:  全 文 ( PDF ) ( 43613KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 掏蚀是半干旱地区土遗址的典型病害之一,其中根部掏蚀对土遗址的稳定性和完整性造成了严重威胁。本工作在修复用土样中加入溶液前驱体,原位聚合形成丙烯酸-丙烯酰胺-丙磺酸三元共聚物超吸水性树脂(SAP),通过SAP对水分运移的调控,提高修复材料的力学性能及耐久性。分析揭示了SAP的原位聚合机理,并探究了不同含量SAP改性土试样的物相组成和微观形貌,以及对土样色度、透气性、抗压强度、耐崩解及耐盐循环等性能的影响。结果表明:SAP在土基体中成功形成了蜂窝状网络结构,该结构提升了土基体强度,其中SAP固含量(质量分数)为5%时,土样的抗压强度达到5.78 MPa,比空白土样提升5倍;SAP的引入使得土样色差小于3%,同时透气性变化较小,满足文物修复材料的标准要求。SAP通过吸水形成凝胶体挡水,提高了土体耐崩解能力,其在水中浸泡48 h后外观无大的变化,而且干燥强度仍能维持4.52 MPa;SAP的保水作用能够减缓水分蒸发,从而抑制盐分析出,经耐盐实验7次循环后土样结构基本保持完整,强度仍保持为2.89 MPa。因此,超吸水性材料的引入有望成为土遗址掏蚀修复的有效途径。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张一凡
黎淼
郑尧
刘森彪
程卓越
罗宏杰
李建西
闫宏彬
朱建锋
关键词:  土遗址  掏蚀  修补  原位聚合  超吸水性树脂    
Abstract: Undercutting is one of the typical diseases of earth sites in semi-arid regions, in which basal sapping poses a serious threat to the stability and integrity of earth sites. This work added solution precursors to the repair soil samples, forming super absorbent polymer (SAP) through in-situ polymerization of acrylate-acrylamide-propyl sulfonic acid ternary copolymer, which can regulate water migration and improve the mechanical properties and durability of the repair materials. Then the in-situ polymerization mechanism of SAP were revealed and the phase composition and micro-morphology of soil samples modified with different contents of SAP was explored, as well as the impact on soil color, air permeability, compressive strength, resistance to disintegration, and salt cycle resistance. The results show that SAP successfully forms a honeycomb network structure within the soil matrix, enhancing the strength of the soil matrix. When the solid content of SAP is 5%, the compressive strength of the soil sample reaches 5.5 MPa, which is a fivefold increase compared to the blank soil sample. The addition of SAP reduces the color difference of the soil sample to less than 3%, while the change in air permeability is minimal, meeting the standards for cultural relic restoration materials. SAP improves the disintegration resistance of the soil by absorbing water to form a gel to block water, showing no significant changes in appearance after soaking in water for 48 h, while the dry strength remains at 4.52 MPa. The water retention effect of SAP can slow down moisture evaporation, thereby inhibiting salt crystallization. After seven cycles of salt resistance testing, the structure of the soil sample remains largely intact, with strength still at 2.89 MPa. Therefore, the addition of super absorbent materials is expected to become an effective approach for the erosion repair of archaeological sites through regulation.
Key words:  earthen site    undercutting    repair    in-situ polymerization    super absorbent polymer
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  K878  
  TB324  
基金资助: 国家重点研发计划(2019YFC1520100);国家自然科学基金(52272020;52102108);中国博士后科学基金面上项目(2021M691997);陕西省教育厅重点科研计划项目(22JY009)
通讯作者:  *朱建锋,博士,陕西科技大学材料科学与工程学院(文物保护科学与技术学院)教授、博士研究生导师。目前主要从事材料绿色制备、文化遗产保护材料等方面的研究工作。zhujf@sust.edu.cn   
作者简介:  张一凡,陕西科技大学材料科学与工程学院(文物保护科学与技术学院)硕士研究生,在朱建锋教授的指导下进行研究。目前主要研究领域为文物保护材料、不可移动文物修复。
引用本文:    
张一凡, 黎淼, 郑尧, 刘森彪, 程卓越, 罗宏杰, 李建西, 闫宏彬, 朱建锋. 原位聚合SAP用于半干旱土遗址根部掏蚀修补实验研究[J]. 材料导报, 2025, 39(22): 24110044-8.
ZHANG Yifan, LI Miao, ZHENG Yao, LIU Senbiao, CHENG Zhuoyue, LUO Hongjie, LI Jianxi, YAN Hongbin, ZHU Jianfeng. Experimental Research on Basal Sapping Repair in Semiarid Earthen Sites with In-situ Polymerization SAP. Materials Reports, 2025, 39(22): 24110044-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb. 24110044  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24110044
1 Sun M L, Chen Y R, Shen Y X, et al. Dunhuang Research, 2022(2), 136(in Chinese).
孙满利, 陈彦榕, 沈云霞, 等. 敦煌研究, 2022(2), 136.
2 Zhang G H. Research on consolidation and protection of earth sites. Master's Thesis, Xi’an University of Architecture Science and Technology, China, 2006(in Chinese).
张光辉. 土遗址加固保护研究. 硕士学位论文, 西安建筑科技大学, 2006.
3 Sun M L, Du Z C. Sciences of Conservation and Archaeology, 2024, 36(4), 143(in Chinese).
孙满利, 窦子超. 文物保护与考古科学, 2024, 36(4), 143.
4 Du Z L, Zhu J F, Ma T, et al. Materials Reports, 2024, 39(8), 88(in Chinese).
杜之琳, 朱建锋, 马涛, 等. 材料导报, 2024, 39(8), 88.
5 Zhao H Y, Wen H Z, Hu B, et al. In:Oroceedings of the Second National Geotechnical and Engineering Conference. Wuhan, 2006, pp.896(in Chinese).
赵海英, 魏厚振, 胡波, 等. 第二届全国岩土与工程学术大会论文集. 武汉, 2006, pp.896.
6 Dong Y Z. The Silk Road, 2017(20), 62(in Chinese).
董永周. 丝绸之路, 2017(20), 62.
7 Zhang L L, Hua S D, Zhi H J, et al. Materials Reports, 2020, 34(9), 9034(in Chinese).
张立力, 华苏东, 诸华军, 等. 材料导报, 2020, 34(9), 9034.
8 Xia Y Y. Analysis of factors affecting the hollowing out of the rammed earth walls of the Ming Great Wall at Jiayuguan. Master's Thesis, Lanzhou University, China, 2020(in Chinese).
夏云云. 嘉峪关明长城夯土墙体掏蚀影响因素分析. 硕士学位论文, 兰州大学, 2020.
9 Zhen G Q. In:Protection of Open Earth Sites against Rain Erosion, Conservation and Archaeology of Cultural Relics, Xi’an, China, 2006, pp.394(in Chinese).
甄广全. 露天土遗址防雨蚀保护, 文物保护与科技考古. 西安, 2006, pp.394.
10 Cui K, Kan W W, Han L, et al. Chinese Journal of Geotechnical Engineering, 2011, 33(9), 1412(in Chinese).
崔凯, 谌文武, 韩琳, 等. 岩土工程学报, 2011, 33(9), 1412.
11 Cui K, Guan X P, Kan W W, et al. Chinese Journal of Geotechnical Engineering, 2017, 39(10), 1777(in Chinese).
崔凯, 关喜鹏, 谌文武, 等. 岩土工程学报, 2017, 39(10), 1777.
12 Lei J L, Huang M Y, Chen H L, et al. Materials Reports, 2012, 26(15), 88(in Chinese).
雷惊雷, 黄美燕, 陈卉丽, 等. 材料导报, 2012, 26(15), 88.
13 Cui K, Zhao X Z, Zhu M J, et al. Chinese Journal of Geotechnical Engineering, 2022, 44(11), 2043(in Chinese).
崔凯, 赵晓铮, 朱鸣基, 等. 岩土工程学报, 2022, 44(11), 2043.
14 Wang Y L. Regional Governance, 2021(26), 201(in Chinese).
王宇龙. 区域治理, 2021(26), 201.
15 Lv J, Zhao H, Zhang J Y, et al. Materials Reports, 2024, 38(7), 97(in Chinese).
吕晶, 赵欢, 张金翼, 等. 材料导报, 2024, 38(7), 97.
16 Zhang Y W, Wang X F, Wu Y T, et al. Materials Reports, 26(3), 51(in Chinese).
张雅文, 王秀峰, 伍媛婷, 等. 材料导报 , 2012, 26(3), 51.
17 Zhang Q Y. Study on the inhibition of salinity degradation in the hollowing area of an earthen site by SH hydrophobic bedding. Master's Thesis, Lanzhou University, China, 2022(in Chinese).
张起勇. SH疏水性垫层抑制土遗址掏蚀区盐渍劣化研究. 硕士学位论文, 兰州大学, 2022.
18 Zhao H Y, Li Z X, Wang N, et al. Rock and Soil Mechanics, 2008, 29(2), 392(in Chinese).
赵海英, 李最雄, 汪稔, 等. 岩土力学, 2008, 29(2), 392.
19 Li X M, Zhang H Y, Wu D, et al. Rock and Soil Mechanics, 2023, 44(6), 1593(in Chinese).
李新明, 张浩扬, 武迪, 等. 岩土力学, 2023, 44(6), 1593.
20 He F G, Kan W W, Han W F. Rock and Soil Mechanics, 2009, 30(12), 3803(in Chinese).
和法国, 谌文武, 韩文峰. 岩土力学, 2009, 30(12), 3803.
21 Zhang J Z, Wang J, Li Y, et al. Materials Reports, 2022, 36(16), 17(in Chinese).
张吉哲, 王静, 李岩, 等. 材料导报, 2022, 36(16), 17.
22 Ranalli G, Bottura G, Taddei P, et al. Journal of Environmental Science and Health, 2001, 36(4), 415.
23 Mondini C, Dell A, Maria T, et al. Journal of Environmental Quality, 2003, 32(6), 2379.
24 Wang K, Hu Y Y, He R, et al. Materials Reports, 2023, 37(23), 246(in Chinese).
王柯, 胡元元, 何锐, 等. 材料导报, 2023, 37(23), 246.
25 Zhang J H. Water Resources and Hydropower Engineering, 2005, 36(11), 121(in Chinese).
张金宏. 水利水电技术, 2005, 36(11), 121.
26 Li Yunfeng, Luo Hongjie, Zhang Biao, et al. Materials Today Communications, 2023, 34, 2352.
27 Zhu Huimmei, Chen Jiani, Li Hui. Case Studies In Construction Materials, 2022, 17, 2214.
28 Zhang C, Wang Z D, Shi X Y, et al. Materials Reports, 2024, 38(22), 196(in Chinese).
张铖, 王振地, 史鑫宇, 等. 材料导报, 2024, 38(22), 196.
29 Liu S B, Zhu J F, Du Z L, et al. Journal of Shaanxi University of Science and Technology, 2023, 41(4), 92(in Chinese).
刘森彪, 朱建锋, 杜之琳, 等. 陕西科技大学学报, 2023, 41(4), 92.
30 Vshivkov S A, Soliman T S, Kluzhin E S, et al. Journal of Molecular Liquids, 2019, 294, 111551.
31 Rao B, Zou W J, Zhao W, et al. Chinese Journal of Engineering, 2024, 46(6), 1012(in Chinese).
饶博, 邹文杰, 赵伟, 等. 工程科学学报, 2024, 46(6), 1012.
32 Xu R, Xie X, Ren B, et al. Journal of Hydrology, 2021, 600, 126571.
33 Al-Hajri S, Mahmood S M, Saeed Akbari, et al. Journal of Petroleum Exploration and Production Technology, 2019, 9(2), 1539.
[1] 杜之琳, 朱建锋, 马涛, 赵西晨, 罗宏杰, 刘森彪. 半干旱地区土遗址加固材料的对比研究——以陕西临潼地区某大型土遗址为例[J]. 材料导报, 2025, 39(8): 24030010-9.
[2] 杨家盛, 邓明科, 张阳玺, 张敏, 范洪侃. 快速修补用高早强高延性混凝土的力学行为[J]. 材料导报, 2025, 39(15): 23070057-8.
[3] 吕晶, 赵欢, 张金翼, 席培峰. 冻融循环作用下不同含水率灰土的细微观结构与宏观力学性能[J]. 材料导报, 2024, 38(7): 22110321-7.
[4] 杨淑雁, 徐盼盼, 宋俊杰, 陈小龙. 基于离差最大化-灰色关联的修补混凝土配合比评价[J]. 材料导报, 2024, 38(6): 22040151-7.
[5] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[6] 李伟, 谢剑, 佟成龙. 玄武岩微筋对磷酸镁修补砂浆弯曲性能的增强增韧效应研究[J]. 材料导报, 2024, 38(17): 23120021-9.
[7] 元强, 王攒, 姚灏, 黄炬, 左胜浩, 黄海. 活性改性剂合成及其对环氧胶黏剂力学与界面粘接性能的影响[J]. 材料导报, 2024, 38(11): 22120199-8.
[8] 张军, 郭乃胜, 吕欣, 褚召阳, 房辰泽. 聚酰胺基树脂型沥青路面浅槽快速修补材料的制备与性能研究[J]. 材料导报, 2023, 37(20): 22050191-7.
[9] 梁宁, 陆小凤, 周街荣, 黄丽葵, 王军正. 高内相乳液原位聚合制备多孔复合材料吸附铅离子[J]. 材料导报, 2023, 37(15): 22040290-7.
[10] 朱红光, 侯金良, 石晶, 葛洁雅, 吕威, 杨森, 李宗徽, 沈正艳. 碱激发材料修补普通混凝土的黏结面性能研究[J]. 材料导报, 2022, 36(16): 21030218-5.
[11] 刘炎昌, 娄鸿飞, 刘东志, 李巍, 周雪琴. 界面聚合法制备十二醇相变微胶囊的工艺及性能[J]. 材料导报, 2021, 35(2): 2157-2160.
[12] 李崇智, 吴慧华, 牛振山, 曹莹莹. 水泥基渗透结晶防水母料的配制与应用性能[J]. 材料导报, 2020, 34(Z2): 261-264.
[13] 龚明, 张代军, 刘燕峰, 张嘉阳, 李军, 陈祥宝. 纤维增强热塑性复合材料原位聚合成型技术研究进展[J]. 材料导报, 2020, 34(21): 21180-21187.
[14] 徐颖, 邓利蓉, 杨进超, 左联, 杜广报, 芦玉峰, 李莎莎. 磷酸镁水泥的制备及其快速修补应用研究进展[J]. 材料导报, 2019, 33(Z2): 278-282.
[15] 张喆, 方健, 席丽敏. 基于响应面优化的石蜡相变微胶囊的性能评价[J]. 材料导报, 2019, 33(24): 4181-4187.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[8] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[9] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
[10] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed