Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 23120256-10    https://doi.org/10.11896/cldb.23120256
  无机非金属及其复合材料 |
雷达/红外兼容隐身材料设计原理及研究进展
陈易诚1, 涂建勇2, 李鑫3,*, 范晓孟3,*
1 中国航发四川燃气涡轮研究院,成都 610500
2 西安鑫垚陶瓷复合材料股份有限公司,西安 710117
3 西北工业大学超高温结构复合材料重点实验室,西安 710072
Design Principle and Research Progress of Radar/Infrared Compatible Stealth Materials
CHEN Yicheng1, TU Jianyong2, LI Xin3,*, FAN Xiaomeng3,*
1 AECC Sichuan Gas Turbine Research Establishment, Chengdu 610500, China
2 Xi'an Xinyao Ceramic Composite Materials Co., Ltd., Xi'an 710117, China
3 Science and Technology on Thermostructural Composite Materials Laboratory, Northwestern Polytechnical University, Xi'an 710072, China
下载:  全 文 ( PDF ) ( 49451KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 近年来,现代军事探测技术和精确制导武器得到飞速发展,雷达及红外探测和制导手段的广泛应用推动雷达/红外兼容隐身材料成为目前隐身材料领域的研究热点。雷达探测和红外探测在探测原理上有根本性差别,导致对这两个波段的隐身材料电磁特性的需求完全不同。研究人员利用两个波段电磁波波长的差异实现对电磁波的差异化响应,开展了雷达/红外兼容隐身材料的设计。本文系统阐述了雷达/红外隐身的基础理论及设计原理,综述了雷达/红外兼容隐身材料的研究现状,并对其未来发展方向进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈易诚
涂建勇
李鑫
范晓孟
关键词:  雷达/红外兼容隐身  设计原理  多频谱隐身  超材料结构设计    
Abstract: Recently, modern military detection technology and precision-guided weapons have developed rapidly. The wide application of radar and infrared detection and guidance methods has promoted radar/infrared compatible stealth materials to a research hotspot in the field of stealth materials. The fundamental differences in detection principle of radar and infrared detection leads to completely different requirements for the electromagnetic properties of stealth materials in the two bands. Researchers use the difference in the wavelength of the two bands to achieve differentiated response to electromagnetic waves, and carry out the design of radar/infrared compatible stealth materials. In this paper, the basic theory and design principle of radar/infrared stealth are systematically expounded, the research progress of radar/infrared compatible stealth materials is reviewed, and the future development direction is prospected.
Key words:  radar/infrared compatible stealth    design principle    multi-spectrum stealth    metamaterial structure design
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  TB34  
基金资助: 国家自然科学基金(52372095);国家科技重大专项(J2019-VI-0014-0129)
通讯作者:  *李鑫,香港城市大学博士后研究员。研究方向为陶瓷功能材料设计制造与表征,主要从事材料的电磁功能设计、多频谱响应机制分析、微纳结构设计等研究。
范晓孟,博士,西北工业大学材料学院副教授、博士研究生导师。目前主要从事高温承载吸波一体化、高热/力稳定性陶瓷基复合材料的研究。lixink@mail.nwpu.edu.cn;fanxiaomeng@nwpu.edu.cn   
作者简介:  陈易诚,中国航发四川燃气涡轮研究院副主任师。主要研究领域为陶瓷基复合材料设计及应用技术。
引用本文:    
陈易诚, 涂建勇, 李鑫, 范晓孟. 雷达/红外兼容隐身材料设计原理及研究进展[J]. 材料导报, 2025, 39(6): 23120256-10.
CHEN Yicheng, TU Jianyong, LI Xin, FAN Xiaomeng. Design Principle and Research Progress of Radar/Infrared Compatible Stealth Materials. Materials Reports, 2025, 39(6): 23120256-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23120256  或          https://www.mater-rep.com/CN/Y2025/V39/I6/23120256
1 Wang Z R, Yu D B, Sun X Q, et al. Laser & Infrared, 2001, 31(5), 301 (in Chinese).
王自荣, 余大斌, 孙晓泉, 等. 激光与红外, 2001, 31(5), 301.
2 Ma C Y, Cheng H F, Tang G P, et al. Materials Reports, 2007, 21(1), 126 (in Chinese).
马成勇, 程海峰, 唐耿平, 等. 材料导报, 2007, 21(1), 126.
3 Zhou Y, Chen C J. National Defense Science & Technology, 2003(7), 12 (in Chinese).
周义, 陈长君. 国防科技, 2003(7), 12.
4 Chen H Q, Wang L Y, Liu G. Aerodynamic Missile Journal, 2019(7), 37 (in Chinese).
陈海青, 汪刘应, 刘顾. 飞航导弹, 2019(7), 37.
5 Qin F, Brosseau C. Journal of Applied Physics, 2012, 111(6), 4.
6 Cao M S, Song W L, Hou Z L, et al. Carbon, 2010, 48(3), 788.
7 Fan J C, Yuan W F, Zhou A G. Advanced Ceramics, 2022, 43(1), 1 (in Chinese).
樊嘉诚, 袁文凤, 周爱国. 现代技术陶瓷, 2022, 43(1), 1.
8 Peng L. Design, fabrication and characterization of the multilayer film based spectrally selective emission material for infrared stealth. Ph. D. Thesis, National University of Defense Technology, China, 2019 (in Chinese).
彭亮. 光谱选择性发射红外隐身多层膜的设计、制备与性能研究. 博士学位论文, 国防科技大学, 2019.
9 Zhang M. Research on fabrication and infrared radiation properties of ZrB2 thin films. Ph. D. Thesis, University of Electronic Science and technology, China, 2021 (in Chinese).
张敏. 硼化锆薄膜的制备与红外辐射特性研究. 博士学位论文, 电子科技大学, 2021.
10 Du Y F. Preparation and properties study of infrared microwave-compatible materials. Ph. D. Thesis, Beijing Jiaotong University, China, 2010 (in Chinese).
杜玙璠. 红外微波兼容材料的制备及性能研究. 博士学位论文, 北京交通大学, 2010.
11 Chen Z W, Fan X M, Huang X X, et al. Advanced Ceramics, 2020, 41(Z1), 1 (in Chinese).
陈政伟, 范晓孟, 黄小萧, 等. 现代技术陶瓷, 2020, 41(Z1), 1.
12 Ruan Y Z. Radar cross section and stealth technology, National Defence Industry Press, China, 1998 (in Chinese).
阮颖铮. 雷达截面与隐身技术, 国防工业出版社, 1998.
13 Deng H W, Zhao C S, Jia D B, et al. Aeroengine, 2014, 40(2), 10 (in Chinese).
邓洪伟, 赵春生, 贾东兵, 等. 航空发动机, 2014, 40(2), 10.
14 Liu H T, Cheng H F, Wang J, et al. Materials Reports, 2009, 23(19), 24 (in Chinese).
刘海韬, 程海峰, 王军, 等. 材料导报, 2009, 23(19), 24.
15 Yang Q Z, Wang H M, Chang Z H. Aerospace Electronic Warfare, 2004(6), 55 (in Chinese).
杨青真, 王红梅, 常泽辉. 航天电子对抗, 2004(6), 55.
16 Xiang Y C, Qu C W, Ping D F, et al. Ship Electronic Engineering, 2010(2), 103 (in Chinese).
向迎春, 曲长文, 平殿发, 等. 舰船电子工程, 2010(2), 103.
17 Sang J H, Zhang Z B. Infrared and Laser Engineering, 2013, 42(1), 14 (in Chinese).
桑建华, 张宗斌. 红外与激光工程, 2013, 42(1), 14.
18 Hou Z N. Ome Information, 2001(11), 41 (in Chinese).
侯振宁. 光机电信息, 2001(11), 41.
19 Chen H. Infrared physics, National Defence Industry Press, China, 1985 (in Chinese).
陈衡. 红外物理学, 国防工业出版社, 1985.
20 Fu W. Infrared and Laser Engineering, 2002, 31(1), 88 (in Chinese).
付伟. 红外与激光工程, 2002, 31(1), 88.
21 Jiang Y T, Wang Y. Infrared Technology, 2003, 25(5), 7 (in Chinese).
蒋耀庭, 王跃. 红外技术, 2003, 25(5), 7.
22 Wang K, Tian H Y, Yang W, et al. Advanced Ceramics, 2023, 44(2), 77 (in Chinese).
王康, 田洪翼, 杨威, 等. 现代技术陶瓷, 2023, 44(2), 77.
23 Guo T C. Research on high temperature infrared emissivity modulation of ZnO-based materials and infrared-radar compatible stealth properties. Ph. D. Thesis, Nanjing University of Aeronautics and Astronautics, China, 2020 (in Chinese).
郭腾超. ZnO基材料高温红外发射率调控机制及红外/雷达兼容特性研究. 博士学位论文, 南京航空航天大学, 2020.
24 Li X. Preparation and performance of BaxSr1-xAl2Si2O8 ceramic-based radar/infrared compatible stealth materials. Ph. D. Thesis, Northwestern Polytechnical University, China, 2023 (in Chinese).
李鑫. BaxSr1-xAl2Si2O8陶瓷基雷达/红外兼容隐身材料制备及性能. 博士学位论文, 西北工业大学, 2023.
25 Wang G, Li C F, Estevez D, et al. Nano-Micro Letters, 2023, 15(1), 152.
26 Tian Y, Estevez D, Wei H J, et al. Chemical Engineering Journal, 2021, 421, 129781.
27 Luo H J, Fan X M, Tu J Y, et al. Applied Surface Science, 2023, 609, 155284.
28 Xu S Q, Duan Y F. Journal of Air Force Radar Academy, 2001(1), 45 (in Chinese).
徐生求, 段永法. 空军雷达学院学报, 2001(1), 45.
29 Tian Y, Estevez D, Wang G, et al. Carbon, 2024, 218, 118614.
30 Lv H L, Ji G B, Li X G, et al. Journal of Magnetism and Magnetic Materials, 2015, 374, 225.
31 Li X G, Ji G B, Lv H L, et al. Journal of Magnetism and Magnetic Materials, 2014, 355, 65.
32 Pan W L, He M, Bu X H, et al. Journal of Materials Science:Materials in Electronics, 2017, 28(12), 8601.
33 Zhao Y Z, Xu M, Li L, et al. Vacuum and Cryogenics, 2009(3), 178 (in Chinese).
赵印中, 许旻, 李林, 等. 真空与低温, 2009(3), 178.
34 Wang Z R, Yu D B. Infrared Technology, 1999, 21(1), 41 (in Chinese).
王自荣, 余大斌. 红外技术, 1999, 21(1), 41.
35 Qu S Y. Research on theories. and experiments of infrared stealthy ZnO material with low-emissivity. Master's Thesis, Xi'an University of Electronic Technology, China, 2012 (in Chinese).
瞿诗瑜. 低发射率ZnO红外隐身材料的理论与实验研究. 硕士学位论文, 西安电子科技大学, 2012.
36 Su X L, Jia Y, Liu X Q, et al. Ceramics International, 2014, 40(4), 5307.
37 Shu R W, Xing H L, Cao X L, et al. Nano, 2015, 11(4), 1650047.
38 Zhang Z Y, Xu M Z, Ruan X F, et al. Ceramics International, 2017, 43(3), 3443.
39 Yang Y F, Liu M J. Engineering Plastics Application, 2002(7), 57 (in Chinese).
杨永芳, 刘敏江. 工程塑料应用, 2002(7), 57.
40 Yang C C, Gung Y J, Hung W C, et al. Composites Science and Technology, 2010, 70(3), 466.
41 Zhou Y K, Wang Y S, He D W, et al. Journal of Nanoscience and Nanotechnology, 2014, 14(5), 3417.
42 Wang X K, Zhao F, Wang J J. Infrared, 2019, 40(7), 1 (in Chinese).
汪心坤, 赵芳, 王建江. 红外, 2019, 40(7), 1.
43 Yan L L, Wang X X, Zhao S C, et al. ACS Applied Materials & Interfaces, 2017, 9(12), 11116.
44 Wang Y, Zhang W Z, Wu X M, et al. Synthetic Metals, 2017, 228, 18.
45 Fleming J G, Lin S Y, El-Kady I, et al. Nature, 2002, 417(6884), 52.
46 Gao Y F, Shi J M, Zhao D P, et al. Infrared and Laser Engineering, 2012, 41(4), 970 (in Chinese).
高永芳, 时家明, 赵大鹏, 等. 红外与激光工程, 2012, 41(4), 970.
47 Wang X, Hu X H, Li Y Z, et al. Applied Physics Letters, 2002, 80(23), 4291.
48 Zhang J K, Liu R H, Zhao D P, et al. Optical Materials Express, 2019, 9(1), 195.
49 Li W, Song T, Wang K, et al. Advanced Ceramics, 2023, 44(4), 245 (in Chinese).
李魏, 宋涛, 王坤, 等. 现代技术陶瓷, 2023, 44(4), 245.
50 Wang Z X, Cheng Y Z, Nie Y, et al. Journal of Applied Physics, 2014, 116(5), 054905.
51 Zhang J K, Shi J M, Zhao D P, et al. Infrared Physics & Technology, 2017, 85, 62.
52 程立, 李志刚, 陈宗胜, 等. 中国专利, CN112346163A, 2021.
53 Meng Z, Li G D, Cui G Z, et al. Materials Reports, 2023, 37(21), 5 (in Chinese).
孟真, 李广德, 崔光振, 等. 材料导报, 2023, 37(21), 5.
54 Landy N I, Sajuyigbe S, Mock J J, et al. Physical Review Letters, 2008, 100(20), 207402.
55 Yu N F, Genevet P, Kats M A, et al. Science, 2011, 334(6054), 333.
56 Li X, Xiao S Y, Cai B G, et al. Optics Letters, 2012, 37(23), 4940.
57 Tian H, Liu H T, Cheng H F. Chinese Physics B, 2014, 23(2), 025201.
58 Gao Z Q, Fan Q, Tian X X, et al. Optical Materials, 2021, 112, 110793.
59 Zhang C L, Wu X Y, Huang C, et al. Advanced Materials Technologies, 2019, 4(8), 1900063.
60 Zhong S M, Wu L J, Liu T J, et al. Optics Express, 2018, 26(13), 16466.
61 Feng X D, Xie X, Pu M B, et al. Optics Express, 2020, 28(7), 9445.
62 Kim J, Han K, Hahn J W. Scientific Reports, 2017, 7(1), 6740.
63 Huang Y J, Pu M B, Zhao Z Y, et al. Optics Communications, 2018, 407, 204.
64 Phan L, Walkup Iv W G, Ordinario D D, et al. Advanced Materials, 2013, 25(39), 5621.
65 Kim T, Bae J Y, Lee N, et al. Advanced Functional Materials, 2019, 29(10), 1807319.
66 Zhu H Z, Li Q, Tao C N, et al. Nature communications, 2021, 12(1), 1805.
67 Cui T J, Qi M Q, Wan X, et al. Light:Science & Applications, 2014, 3(10), e218.
68 Pang Y, Li Y, Yan M, et al. Optics Express, 2018, 26(9), 11950.
[1] 杨士冠, 陈树权, 王剑, 何俊松, 程林, 翟立军, 刘虹霞, 张艳, 孙志刚. 基于碲化铋的热电制冷器瞬态制冷规律研究[J]. 材料导报, 2025, 39(6): 24020052-16.
[2] 孙国栋, 吕龙飞, 解静, 贾研, 康凯, 郑斌, 尹昭怡, 田清来. 碳纤维增强复合材料阻尼性能的研究进展[J]. 材料导报, 2025, 39(6): 24010168-11.
[3] 王宛滢, 李宁, 宋子元. 刺激响应性聚氨基酸材料的设计与应用[J]. 材料导报, 2025, 39(5): 24080169-13.
[4] 陈浩霖, 赵佳薇, 张俊豪, 于博, 张强飞, 罗倪, 刘振国. SAMs在n-i-p型钙钛矿太阳能电池界面工程中的应用[J]. 材料导报, 2025, 39(5): 24010233-12.
[5] 李家奇, 窦红静. 人工细胞的构筑及生物医学应用[J]. 材料导报, 2025, 39(5): 24080236-13.
[6] 陈阿青, 梁轻. Nb掺杂二氧化钛纳米管电子结构第一性原理计算[J]. 材料导报, 2025, 39(4): 23100185-6.
[7] 夏晋, 郑宇航, 汪雨青. 基于多尺度模型的混凝土有效电阻率与几何代表尺寸研究[J]. 材料导报, 2025, 39(4): 24020001-7.
[8] 鲍志超, 周雪松. 高铁酸钾改性酒糟生物炭对诺氟沙星的吸附性能研究[J]. 材料导报, 2025, 39(4): 24010137-8.
[9] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[10] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[11] 方双明, 付娟, 罗洁, 彭祝, 李子玲, 程金科. 无机碱与季铵盐协同改性磷石膏的抗霉特性及物理力学性能研究[J]. 材料导报, 2025, 39(3): 24010006-8.
[12] 董伟, 刘苏磊, 王旭东, 许富民. 脉冲微孔喷射法的应用研究进展[J]. 材料导报, 2025, 39(3): 24020091-9.
[13] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[14] 张荣振, 柏浩. 用于可穿戴热管理的智能纤维及织物[J]. 材料导报, 2025, 39(1): 24080088-11.
[15] 邢欢欢, 胡萍, 罗政, 毛丽秋, 盛丽萍, 王珊珊. 低对称性二维层状过渡金属硫族化合物合金及异质结的化学气相沉积法制备研究进展[J]. 材料导报, 2024, 38(24): 23100004-13.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed