Please wait a minute...
材料导报  2026, Vol. 40 Issue (2): 24100244-7    https://doi.org/10.11896/cldb.24100244
  金属与金属基复合材料 |
AlCl3-EMIC离子液体电沉积Al-Ti合金及耐蚀性研究
钟海霞, 钟庆东*, 杨健, 章书剑, 王雪妹, 范佳宝
上海大学材料科学与工程学院,省部共建高品质特殊钢冶金与制备国家重点实验室,上海市钢铁冶金新技术开发应用重点实验室,上海 200444
Study on Electrodeposition of Al-Ti Alloy in AlCl3-EMIC Ionic Liquid and Its Corrosion Resistance
ZHONG Haixia, ZHONG Qingdong*, YANG Jian, ZHANG Shujian, WANG Xuemei, FAN Jiabao
School of Materials Science and Engineering, Shanghai University, State Key Laboratory of Metallurgy and Preparation of High-quality Special Steel, Shanghai Key Laboratory of New Technology Development and Application of Iron and Steel Metallurgy, Shanghai 20044, China
下载:  全 文 ( PDF ) ( 18248KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 本研究旨在通过优化Al-Ti合金镀层的电沉积工艺,调控Ti含量并提升耐腐蚀性能,以满足高性能防护镀层的应用需求。采用恒电流法在铜基体上制备Al-Ti合金镀层,电解液由物质的量比2∶1的AlCl3与1-乙基-3-甲基咪唑(EMIC)离子液体组成,并以氟钛酸钾(K2TiF6)作为Ti源,通过调控电流密度(10~20 mA/cm2)和电沉积时间(45~120 min),系统研究了其对镀层形貌、成分及耐腐蚀性能的影响。实验结果表明,随着电流密度的增加,镀层中的Ti含量显著提高,且在较高电流密度下镀层致密性增强。当电流密度为20 mA/cm2、电镀时间为60 min时,镀层中的Ti含量达到最大值(20.43%,质量分数)。电化学测试结果表面,随着电流密度的增加,自腐蚀电流密度从56.520 μA/cm2显著降低至1.068 μA/cm2。在15 mA/cm2条件下镀层表现出明显的钝化现象,表现为阳极极化曲线的平台区域。此外,随着电沉积时间的延长,镀层的电荷转移阻抗和膜电阻增加,当电镀时间为90 min时,镀层致密性进一步增强,电化学反应速率减慢,防护性能显著增强。综合分析表明电流密度为15 mA/cm2和电镀时间为90 min时,镀层均表现出最佳的耐腐蚀性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
钟海霞
钟庆东
杨健
章书剑
王雪妹
范佳宝
关键词:  离子液体  EMIC  铝钛合金  氯化铝  耐腐蚀性    
Abstract: This study focuses on optimizing the electrodeposition process of Al-Ti alloy coatings by regulating Ti content and enhancing corrosion resis-tance for high-performance protective applications. Al-Ti alloy coatings were prepared on a copper substrate using a constant current method, with an electrolyte composed of a 2∶1 molar ratio of AlCl3 to 1-ethyl-3-methylimidazolium chloride (EMIC) ionic liquid and potassium fluorotita-nate (K2TiF6) as the Ti source. By adjusting the current density (10—20 mA/cm2) and electrodeposition time (45—120 min), the effects on the morphology, composition, and corrosion resistance of the coatings were systematically investigated. It was observed that the Ti content in the coatings significantly increases with increasing current density, while the densification of the coatings improves at higher current densities. At a current density of 20 mA/cm2 and an electroplating time of 60 min, the Ti content reaches its maximum value of 20.43%. Electrochemical tests showed that the self-corrosion current density decreases significantly from 56.520 μA/cm2 to 1.068 μA/cm2 with increasing current density. A passivation phenomenon is observed at a current density of 15 mA/cm2, characterized by a plateau region in the anodic polarization curve. With increasing electrodeposition time, the charge transfer resistance and film resistance of the coatings increases. At an electroplating time of 90 min, the densification of the coatings is further enhanced, resulting in a slower electrochemical reaction rate and significantly improved protective performance. The coatings prepared at a current density of 15 mA/cm2 and an electroplating time of 90 min exhibit optimal corrosion resistance.
Key words:  ionic liquid    EMIC    Al-Ti alloy    AlCl3    corrosion resistance
出版日期:  2026-01-25      发布日期:  2026-01-27
ZTFLH:  TG174  
基金资助: 国家重点研发计划“材料基因工程关键技术与支撑平台”重点专项(2017YFB0702100)
通讯作者:  *钟庆东,上海大学材料科学与工程学院教授、博士研究生导师。目前主要从事冶金电化学、材料腐蚀与防护、纳米技术应用等方面的研究工作。qdzhong@shu.edu.cn   
作者简介:  钟海霞,上海大学材料科学与工程学院硕士研究生,在钟庆东教授的指导下进行研究。目前主要研究领域为电化学腐蚀。
引用本文:    
钟海霞, 钟庆东, 杨健, 章书剑, 王雪妹, 范佳宝. AlCl3-EMIC离子液体电沉积Al-Ti合金及耐蚀性研究[J]. 材料导报, 2026, 40(2): 24100244-7.
ZHONG Haixia, ZHONG Qingdong, YANG Jian, ZHANG Shujian, WANG Xuemei, FAN Jiabao. Study on Electrodeposition of Al-Ti Alloy in AlCl3-EMIC Ionic Liquid and Its Corrosion Resistance. Materials Reports, 2026, 40(2): 24100244-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100244  或          https://www.mater-rep.com/CN/Y2026/V40/I2/24100244
1 Chang S M, Shen R Q, Wu L Z, et al. RSC Advances, 2025, 15(8), 6413.
2 Bäcke O, Petterson H, Stiens D, et al. International Journal of Refractory Metals and Hard Materials, 2025, 128, 107075.
3 Nahian M K, Reddy R G. The Minerals, Metals & Materials Series, 2025, 38, 1103.
4 Yu H M, Lv C, Yan C S, et al. Small Methods, 2024, 8(6), 2300758.
5 Kong L M, Kan H M, Meng Y Y, et al. Light Alloy Processing Technology, 2022, 50(1), 1(in Chinese).
孔令明, 阚洪敏, 孟媛媛, 等. 轻合金加工技术, 2022, 50(1), 1.
6 Wang L L, Jiao H D, Yuan R, et al. Rare Metals, 2024, 3(10), 4921.
7 Pérez-Álvarez R, González-Gómez P Á, Santana D, et al. Applied Thermal Engineering, 2022, 216, 119097.
8 Prieto C, Ruiz-Cabañas J, Madina V, et al. Solar Energy Materials and Solar Cells, 2022, 247, 111943.
9 Jiang D X, Lu J F, Ding J, et al. Solar Energy Materials and Solar Cells, 2024, 269, 112801.
10 Robin A, Ribeiro R B. Journal of Applied Electrochemistry, 2000, 30, 239.
11 Zhong S, Song T, Zhang Y R, et al. Science in China: Chemistry, 2023, 53(10), 2008(in Chinese).
钟声, 宋婷, 张钰瑞, 等. 中国科学: 化学, 2023, 53(10), 2008.
12 Usman M, Wirzal M D H, Hizam S M, et al. Journal of Molecular Li-quids, 2025, 417, 126537.
13 Foong C Y, Lau X L, Wirzal M D H, et al. Journal of Molecular Li-quids, 2022, 368, 120677.
14 Qiao Y, Chen L P, Yuwen F Y, et al. Applied Surface Science, 2024, 643, 158677.
15 Foong C Y, Zulkifli M F M, Wirzal M D H, et al. Journal of Molecular Liquids, 2021, 333, 115884.
16 Pradhan D, Reddy R G. Electrochimica Acta, 2009, 54(6), 1874.
17 Pradhan D, Reddy R G, Lahiri A. Metallurgical and Materials Transactions B, 2009, 40, 114.
18 Lahiri A, Das R. Materials Chemistry and Physics, 2012, 132, 34.
19 Zhang X Y, Hua Y X, Xu C Y, et al. Electrochimica Acta, 2011, 56(24), 8530.
20 Xu C Y, Hua Y X, Zhang Q B, et al. Journal of Solid State Electroche-mistry, 2017, 21, 1349.
21 Cvetković V S, Vukićević N M, Milićević-Neumann K, et al. Metals, 2020, 10, 88.
22 Tsuda T, Hussey C L, Stafford G R, et al. Journal of the Electrochemical Society, 2003, 150, C234.
23 Yang R X, Xie X M, Yang E H, et al. Surface engineering in China, 2023, 36(2), 166(in Chinese).
杨瑞霞, 谢小梦, 杨尔慧, 等. 中国表面工程, 2023, 36(2), 166.
24 Rahmati M, Raeissi K, Toroghinejad M R, et al. Journal of Magnesium and Alloys, 2022, 10(9), 2574.
25 Gugua E C, Ujah C O, Asadu C O, et al. Hybrid Advances, 2024, 7, 100286.
26 BakkarA. ChemEngineering, 2025, 9(1), 16.
27 Abood H M, Abbott A P, Ballantyne A D, et al. Chemical Communications, 2011, 47, 3523.
28 Li B, Fan C H, Chen Y, et al. Electrochim Acta, 2011, 56, 5478.
29 Zhang L, Guo J Q, Yan T, et al. Applied Surface Science, 2018, 434, 633.
30 Xue D P, Xu B J, Chen Y M. et al. Journal of Chemical Engineering, 2015, 66(S1), 282(in Chinese).
薛东朋, 徐霸津, 陈益明, 等. 化工学报, 2015, 66(S1), 282.
31 Zhang Y L, Wang Q, Wang D T, et al. Journal of Materials Engineering and Performance, 2025, 34, 1016.
32 Jiao H D. Journal of Advanced Thermal Science Research, 2021, 8, 71.
33 Zeng F F, Qiu L C, Zhu J F, et al. Ceramics International, 2024, 50, 41904.
34 El-Katori E E, Nessim M I, Deyab M A, et al. Journal of Molecular Li-quids, 2021, 337, 116467.
35 Wu Z W, Li S L, Wang N, et al. Vacuum, 2024, 224, 113122.
36 Zhang P, Yue X J, Gao Y R, et al. Vacuum, 2024, 219, 112700.
37 Dai S, Liao L H, Feng Y, et al. Journal of Materials Research and Technology, 2024, 30, 1426.
38 Adesina A Y, Ahmed H M, Suleiman R K, et al. Materials, 2022, 15(24), 8780.
39 Han B, Zhu S G, Dong W W, et al. International Journal of Refractory Metals and Hard Materials, 2021, 99, 105566.
40 Liu H L, Tong Z P, Zhou W F, et al. Journal of Alloys and Compounds, 2020, 846, 155837.
41 Chen S Y, Li F S, Liu Q, et al. Journal of Materials Engineering and Performance, 2020, 29, 3420.
42 Meng S P, Yu Y Q, Zhang X B, et al. Vacuum, 2024, 221, 112911.
43 Luo H, Yu Q, Dong C F, et al. Corrosion Science, 2018, 139, 185.
44 Vivegnis S, Devillers S, Delhalle J, et al. Protection of Metals and Physical Chemistry of Surfaces, 2018, 54, 652.
45 Ren G C, Zheng Y, Xiong R Z, et al. Materials Characterization, 2024, 218, 114516.
46 Braun S, Wiemer M, Schulz S E. Micromachines, 2024, 15(6), 746.
47 Zehtab M, Najafisayar P. Results in Surfaces and Interfaces, 2024, 15, 100215.
48 Shao Z X, Wu B T, Li P B, et al. Materials Characterization, 2023, 199, 112844.
49 Shao Z X, Tang C, Liu X H, et al. Corrosion Science, 2024, 233, 112071.
50 Maniam K K, Paul S A. Coatings, 2021, 11, 80.
51 Zhao H, Ye L Y, Cheng Q S, et al. Journal of Alloys and Compounds, 2023, 943, 169198.
52 Zhang Y, Wang Z N, Huang S Y, et al. Corrosion Science, 2024, 235, 112185.
[1] 宋海鹏, 张冠, 范雪茹, 黄勇, 谢磊, 赵冬梅, 李强, 任铁真. 过渡族金属微量添加对Fe基块状金属玻璃的玻璃形成能力、力学性能和耐腐蚀性的影响[J]. 材料导报, 2026, 40(2): 24120223-7.
[2] 谢志翔, 彭溢源, 刘汉语, 朱嗣承, 陈婷. 离子液体辅助水热法制备BiVO4黄色色料及色度研究[J]. 材料导报, 2025, 39(7): 24010243-5.
[3] 王少辉, 李琦, 周梅梅, 杨春云, 谢会成, 吴玉庭, 鹿院卫. 咪唑离子液体基中低温相变材料热物性及储热应用[J]. 材料导报, 2025, 39(7): 23090077-14.
[4] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[5] 王森巍, 王丽, 王明庆, 佘加, 易嘉琰, 陈先华, 潘复生. Mg-xSc(x=0.5,1.0,3.0,5.0)生物医用合金组织与性能研究[J]. 材料导报, 2025, 39(5): 24090019-8.
[6] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[7] 孙宇轩, 张扬, 刘金涛, 郑依雯, 吕汪洋, 李楠. 离子凝胶在柔性可穿戴系统中的应用研究进展[J]. 材料导报, 2025, 39(24): 24120063-11.
[8] 王帅, 罗兵辉, 邢莎莎, 袁光辉, 谢宁, 姜根. 低温预时效对Al-4.5Zn-1.4Mg合金组织和耐腐蚀性能的影响[J]. 材料导报, 2025, 39(23): 24040234-6.
[9] 赵兴源, 刘昕, 刘秋元, 邱肖盼, 张子月, 江社明, 张启富. 连续物理气相沉积带钢涂镀研究进展与应用现状[J]. 材料导报, 2025, 39(2): 24030032-9.
[10] 梁文杰, 董强胜, 章晓波. 增材制造铝合金组织结构与性能研究进展[J]. 材料导报, 2025, 39(19): 24100182-15.
[11] 霍丽霞, 张静静, 郭芳君, 刘师洋, 贺颖, 曹珍, 张凯锋, 高鸿. 空间流体润滑材料研究进展[J]. 材料导报, 2025, 39(15): 25030237-8.
[12] 韩炬, 王博超, 董东东, 马汝成, 龙海洋, 李晓硕, 王涛, 闫星辰. 激光选区熔化Inconel 625合金在酸性环境中的腐蚀机理研究[J]. 材料导报, 2025, 39(10): 24080164-6.
[13] 马东帅, 闫二虎, 白金旺, 王豪, 张硕, 王艺豪, 李唐卫, 郭智洁, 周子锐, 邹勇进, 孙立贤. V-Ti-Fe三元合金显微组织、氢传输行为及耐蚀性能研究[J]. 材料导报, 2024, 38(8): 22110007-7.
[14] 钟丽萍, 路迢迢, 孙林超, 张梅, 王亮亮, 王永建. 镁合金多向锻造技术的研究现状与展望[J]. 材料导报, 2024, 38(23): 23070200-11.
[15] 颜蜀雋, 谭雅莉, 庞忠荣, 万鹏颖, 齐福刚. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 22110089-6.
[1] REN Weixin, CAO Shengfei, DAI Wenjie, XIE Jingli, ZHANG Qi. Progress in Research on Shear Characteristics of Buffer Materials for High-level Radioactive Waste Repositories[J]. Materials Reports, 2025, 39(23): 25010172 -11 .
[2] JIANG Yue, XIAO Mingjun. Research Progress of High-entropy Oxides in Electrode Materials for Sodium-ion Batteries[J]. Materials Reports, 2025, 39(24): 25010122 -9 .
[3] MA Shuo, JIANG Yi, GAO Xiaojian. The Influence Law and Mechanism of C-S-H Seed on the Strength of Steam Curing Cement-based Materials[J]. Materials Reports, 2025, 39(24): 24120059 -7 .
[4] HU Jianlin, ZHAO Yuxuan, ZHOU Yongxiang, LENG Faguang, DU Xiuli. Dynamic Properties of Geopolymer-Cemented Soils and Fitting Analysis of Their Dynamic Constitutive Model[J]. Materials Reports, 2025, 39(24): 25010113 -9 .
[5] . [J]. Materials Reports, 2026, 40(1): 0 .
[6] ZHANG Minxia. Experimental Study on Influencing Factors and Mechanism of Microbial Soil Improvement Effect[J]. Materials Reports, 2026, 40(1): 24120104 -8 .
[7] . [J]. Materials Reports, 2026, 40(2): 0 .
[8] QU Shaopeng, ZHANG Haiqiang, YANG Lujia, LI Xin, HE Dongyu. Research Status and Development Trends of Transport Materials for Offshore Wind to Hydrogen[J]. Materials Reports, 2026, 40(2): 25020154 -11 .
[9] YU Hao, DENG Wenjun, WANG Yongfei, LUO Dawei. Research Progress of Electrolyte for Anode-free Lithium Metal Batteries[J]. Materials Reports, 2026, 40(2): 24110166 -8 .
[10] ZHANG Ping, LU Mingtai, LU Tiantian, YUE Yinghu. Analysis of DC Aging Characteristics of Stable ZnO Varistors Based on Voronoi Network and Finite Element Simulation Model[J]. Materials Reports, 2026, 40(2): 24090232 -9 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed