Please wait a minute...
材料导报  2025, Vol. 39 Issue (24): 24120063-11    https://doi.org/10.11896/cldb.24120063
  高分子与聚合物基复合材料 |
离子凝胶在柔性可穿戴系统中的应用研究进展
孙宇轩1, 张扬2, 刘金涛1, 郑依雯1, 吕汪洋1,2, 李楠1,*
1 浙江理工大学纺织科学与工程学院(国际丝绸学院),杭州 310018
2 浙江理工大学材料科学与工程学院,杭州 310018
Application of Ionic Gels in Flexible Wearable Systems
SUN Yuxuan1, ZHANG Yang2, LIU Jintao1, ZHENG Yiwen1, LYU Wangyang1,2, LI Nan1,*
1 College of Textile Science and Engineering (International Insititute of Silk), Zhejiang Sci-Tech University, Hangzhou 310018, China
2 School of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou 310018, China
下载:  全 文 ( PDF ) ( 87564KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 离子凝胶(IG)是由离子液体和聚合物支撑网络构成的离子导体,具有抗冻、抗干燥、透明度好、柔韧性高、迟滞低等优点,是当前研究的热点和焦点。本文综述了IG在柔性可穿戴系统中应用的最新进展,重点介绍了IG的合成方法(直接混合法、原位聚合法和溶剂交换法)、物理/化学性能(包括力学性能、导电性能、自愈合性能、抗冻耐热性能、生物相容性、可降解性、形状记忆性和粘附性等)以及应用场景(包括离子皮肤、人体运动监测、人机交互和柔性能量存储等),并总结了IG性能提升和应用场景拓展的常用方法,最后提出了IG目前存在的问题以及未来发展的方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
孙宇轩
张扬
刘金涛
郑依雯
吕汪洋
李楠
关键词:  离子凝胶  柔性  可穿戴  传感器  离子液体  离子导电    
Abstract: Ionic gels(IG), an ionic conductor with the merits of anti-freezing, anti-dehydration, good transparence, favorable flexibility, low hysteresis and so on, construct via ionic liquids and polymer frameworks, which has received abundant attention. In this paper, we display a review about the previous and current progress of IG, especially as flexible wearable materials. Firstly, we focus on the preparation of IG, including direct mixture method, in-situ polymerization method and solvent exchange method. Then, we introduce the main physical/chemical properties of IG, such as mechanical properties, electrical conductivity, self-healing properties, resistance to freezing and heat, biocompatibility, biodegradability, shape memory, and adhesion ability. VSubsequently, application settings of IG in flexible wearable devices are analyzed in regard to ionic skin, human motion detection, human-machine interaction and flexible energy storage. Meanwhile, we summarize the methods for improving the physical/chemical performance of IG and expanding application scenarios of IG based devices. Finally, we propose the main challenges and relevant perspectives to promote its prosperity and development of IG.
Key words:  ionic gels    flexible    wearable    sensors    ionic liquids    ionic conduction
出版日期:  2025-12-25      发布日期:  2025-12-17
ZTFLH:  TP212  
  TQ427.2  
基金资助: 国家自然科学基金(52403052);浙江省自然科学基金(LQ24E030012)
通讯作者:  *李楠,浙江理工大学纺织科学与工程学院(国际丝绸学院)副教授、硕士研究生导师。一直从事功能纺织材料、智能纺织品的研究,近年来开展了系列功能性纺织材料和智能可穿戴电子器件等研究。linan@zstu.edu.cn   
作者简介:  孙宇轩,浙江理工大学纺织科学与工程学院(国际丝绸学院)硕士研究生,在李楠教授的指导下进行研究。目前主要研究方向为智能纺织品。
引用本文:    
孙宇轩, 张扬, 刘金涛, 郑依雯, 吕汪洋, 李楠. 离子凝胶在柔性可穿戴系统中的应用研究进展[J]. 材料导报, 2025, 39(24): 24120063-11.
SUN Yuxuan, ZHANG Yang, LIU Jintao, ZHENG Yiwen, LYU Wangyang, LI Nan. Application of Ionic Gels in Flexible Wearable Systems. Materials Reports, 2025, 39(24): 24120063-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120063  或          https://www.mater-rep.com/CN/Y2025/V39/I24/24120063
1 Hu C, Wang F, Cui X, et al. Advanced Composites and Hybrid Materials, 2023, 6(2), 70.
2 Ha K H, Huh H, Li Z, et al. ACS Nano, 2022, 16(3), 3442.
3 Shi W, Wang Z, Song H, et al. ACS Applied Materials & Interfaces, 2022, 14(30), 35114.
4 Cui X, Chen J, Wu W, et al. Nano Energy, 2022, 95, 107022.
5 Chen H, Guo D, Lei X, et al. ACS Applied Materials & Interfaces, 2023, 15(17), 21435.
6 Chang X, Chen L, Chen J, et al. Advanced Composites and Hybrid Materials, 2021, 4(3), 435.
7 Kuzina M A, Kartsev D D, Stratonovich A V, et al. Advanced Functional Materials, 2023, 33(27), 2301421.
8 Li X, Sun F. ACS Applied Materials & Interfaces, 2023, 15(31), 37717.
9 Cui X, Xi Y, Tu S, et al. TrAC Trends in Analytical Chemistry, 2024, 174, 117662.
10 Ma Z A. Study and application of flexible conductive materials based on ionogel. Ph.D. Thesis, Jilin University, China, 2021 (in Chinese).
马初骜. 基于离子凝胶的柔性导电材料的研究与应用. 博士学位论文, 吉林大学2021.
11 le Bideau J, Viau L, Vioux A. Chemical Society Reviews, 2011, 40(2), 907.
12 Zhu J, Lu X, Zhang W, et al. Macromolecular Rapid Communications, 2020, 41(24), 2000098.
13 Xu L, Huang Z, Deng Z, et al. Advanced Materials, 2021, 33(51), 2105306.
14 Zhou Y, Wang L, Liu Y, et al. Chemical Engineering Journal, 2024, 484, 149632.
15 Ren Y, Guo J, Liu Z, et al. Science Advances, 2019, 5(8), eaax0648.
16 Kim J, Kim J W, Keum K, et al. Chemical Engineering Journal, 2023, 457, 141278.
17 Zhang H J, Sun T L, Zhang A K, et al. Advanced Materials, 2016, 28(24), 4884.
18 Chen L, Zhao C, Huang J, et al. Nature Communications, 2022, 13(1), 6821.
19 Cao Z, Liu H, Jiang L. ACS Applied Polymer Materials, 2020, 2(6), 2359.
20 Yan C C, Li W, Liu Z, et al. Advanced Functional Materials, 2024, 34(17), 2314408.
21 Padhan A K, Sharma D, Thomas T S, et al. Journal of Materials Chemistry A, 2024, 12(16), 9508.
22 Li W, Li L, Liu Z, et al. Advanced Materials, 2023, 35(30), 2301383.
23 Tie J, Mao Z, Zhang L, et al. Advanced Functional Materials, 2023, 33(52), 2307367.
24 Luo Z, Li W, Yan J, et al. Advanced Functional Materials, 2022, 32(32), 2203988.
25 Guo J, Sun Z, Zhou Y, et al. Chinese Journal of Chemistry, 2022, 40(9), 1099.
26 Wang Y, Sun S, Wu P. Advanced Functional Materials, 2021, 31(24), 2101494.
27 Chen L, Fu J, Lu Q, et al. Chemical Engineering Journal, 2019, 378, 122245.
28 Zhao W, Zheng Y, Huang A, et al. Advanced Materials, 2024, 36(30), 2402386.
29 Xu J, Wang H, Du X, et al. Chemical Engineering Journal, 2021, 426, 130724.
30 Wang S, Huang X, Sun H, et al. Chemical Engineering Journal, 2023, 478, 147321.
31 Fan X, Liu S, Jia Z, et al. Chemical Society Reviews, 2023, 52(7), 2497.
32 Egorova K S, Gordeev E G, Ananikov V P. Chemical Reviews, 2017, 117(10), 7132.
33 Luque G C, Picchio M L, Martins A P S, et al. Advanced Electronic Materials, 2021, 7(8), 2100178.
34 Wang Z, Liu J, Zhang J, et al. Cellulose, 2020, 27(9), 5121.
35 Xiong J, Duan M, Zou X, et al. Journal of the American Chemical Society, 2024, 146(20), 13903.
36 Wu D, Wang M, Yu W, et al. Chemical Engineering Journal, 2024, 486, 150121.
37 An Y, YoshidA H, Jing Y, et al. Soft Matter, 2022, 18(36), 6791.
38 Wang S, Zhang D, Zhou J, et al. Nano Energy, 2024, 120, 109166.
39 Qi J, Liu Z, Zhao Z, et al. ACS Applied Polymer Materials, 2024, 6(13), 7659.
40 Huang C, Jia X, Wang D, et al. Chemical Engineering Journal, 2024, 490, 151850.
41 Yi F L, Guo F L, Li Y Q, et al. ACS Applied Materials & Interfaces, 2021, 13(27), 32084.
42 Wang Y, Cao X, Cheng J, et al. ACS Nano, 2021, 15(2), 3509.
43 Zhou K, Zhao Y, Sun X, et al. Nano Energy, 2020, 70, 104546.
44 Wang J, Qi Y, Gui Y, et al. Small, 2024, 20(9), 2305951.
45 Zheng S, Chen X, Shen K, et al. ACS Applied Materials & Interfaces, 2024, 16(3), 4035.
46 Wen J, Zhou L, YE T. SmartMat, 2024, 5(2), 1253.
47 Zhang M, Zhao L, Tian F, et al. Advanced Materials, 2024, 36(35), 2405776.
48 Sun Y, Hu Z, Tang A, et al. Chemical Engineering Journal, 2024, 497, 154495.
49 Zhao Y, Gan D, Wang L, et al. Advanced Materials Technologies, 2023, 8(7), 2201566.
50 Lei B, Cao L, Qu X, et al. Nano Research, 2023, 16(4), 5464.
51 Yan X, Zhao R, Lin H, et al. Advanced Functional Materials, 2024, 35(2), 2412244.
52 Zhao X, Xu J, Zhang J, et al. Materials Horizons, 2023, 10(2), 646.
53 Hyun J E, Lim T, Kim S H, et al. Chemical Engineering Journal, 2024, 484, 149464.
54 Zhou Z, Bai Y, Niu L, et al. Chemical Engineering Journal, 2024, 488, 150982.
55 Tan H, Sun L, Huang H, et al. Advanced Materials, 2024, 36(13), 2310020.
56 Wu S, Kan H, Gao J, et al. Nano Energy, 2024, 122, 109313.
57 Du R, Bao T, Zhu T, et al. Advanced Functional Materials, 2023, 33(30), 2212888.
58 Liu Y, Zhao C, Xiong Y, et al. Advanced Functional Materials, 2023, 33(37), 2303723.
59 Chen Z, Du Z, Li L, et al. Energy & Environmental Materials, DOI:10. 1002/eem2. 12756.
60 Rana H H, Park J H, Ducrot E, et al. Energy Storage Materials, 2019, 19, 197.
[1] 谢志翔, 彭溢源, 刘汉语, 朱嗣承, 陈婷. 离子液体辅助水热法制备BiVO4黄色色料及色度研究[J]. 材料导报, 2025, 39(7): 24010243-5.
[2] 朱文虎, 孙奉琳, 王蓉, JOO SangWoo, 丛晨浩, 李欣琳. 基于丝网印刷制备的导电水凝胶基可拉伸应变传感器[J]. 材料导报, 2025, 39(7): 24010128-6.
[3] 王少辉, 李琦, 周梅梅, 杨春云, 谢会成, 吴玉庭, 鹿院卫. 咪唑离子液体基中低温相变材料热物性及储热应用[J]. 材料导报, 2025, 39(7): 23090077-14.
[4] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[5] 李泽榕, 毛晨雨, 孙涛, 林煌, 王佳明, 陈步超, 汤世伟, 王维燕. 聚合物添加剂工程制备高性能银栅格上柔性钙钛矿太阳能电池[J]. 材料导报, 2025, 39(4): 24040251-5.
[6] 刘海龙, 芶立. 用于ECG电极的长期稳定性评估方法:以皮革电极为例[J]. 材料导报, 2025, 39(4): 23100257-6.
[7] 秦博, 鲁盛会, 刘思涵, 张洁, 龙斌. 面向材料腐蚀防护的铅铋合金氧测氧控研究进展[J]. 材料导报, 2025, 39(4): 24020123-12.
[8] 侯明玥, 姚日晖, 罗东向, 郑华, 刘贤哲, 黎振超, 蔡炜, 宁洪龙, 彭俊彪. 可穿戴电子用前驱体型银墨水研究进展[J]. 材料导报, 2025, 39(4): 23110204-11.
[9] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[10] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[11] 莫秋燕, 吴家隐, 荆涛. 铂和钯修饰硫化锡吸附甲醛的电子及气敏特性研究[J]. 材料导报, 2025, 39(22): 24100250-7.
[12] 王梦妍, 张宇, 秦亚飞, 陈续峰, 隋志源. 基于多壁碳纳米管-钛酸铜钙的多孔柔性电容式压力传感器[J]. 材料导报, 2025, 39(21): 24080188-6.
[13] 姚博星, 马钊, 杨宽, 邱林, 蔺子凡, 王书磊. 医疗用途导电水凝胶的研究进展[J]. 材料导报, 2025, 39(21): 25020012-11.
[14] 戴江炫, 姬文辉, 卢嘉铖, 谢瑞杰, 李林. 汗液发电:原理、器件结构及应用[J]. 材料导报, 2025, 39(2): 24030268-16.
[15] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed