Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 24100250-7    https://doi.org/10.11896/cldb.24100250
  无机非金属及其复合材料 |
铂和钯修饰硫化锡吸附甲醛的电子及气敏特性研究
莫秋燕1, 吴家隐2,*, 荆涛3
1 凯里学院微纳与智能制造教育部工程研究中心,贵州 凯里 556011
2 广东开放大学(广东理工职业学院)工程技术学院,广州 510091
3 凯里学院理学院,贵州 凯里 556011
Study on the Electronic and Gas Sensing Properties of Pt and Pd Modified Tin Sulfide Adsorption of Formaldehyde
MO Qiuyan1, WU Jiayin2,*, JING Tao3
1 Engineering Research Center for Micro Nano and Intelligent Manufacturing, Ministry of Education, Kaili University, Kaili 556011, Guizhou, China
2 Department of Engineering Technology, Guangdong Polytechnic Institute, Guangdong Open University, Guangzhou 510091, China
3 School of Science, Kaili University, Kaili 556011, Guizhou, China
下载:  全 文 ( PDF ) ( 21402KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用密度泛函理论(DFT)计算研究了甲醛(CH2O)在本征SnS、Pt修饰SnS和Pd修饰SnS单层上的吸附行为,重点研究了吸附前后的几何结构、吸附能、能带结构、态密度、差分电荷密度、恢复时间以及灵敏度。研究结果表明:在本征SnS单层上,CH2O分子与SnS单层之间的吸附能较小,吸附距离较长,导致本征SnS单层对CH2O不敏感。Pt修饰SnS单层吸附CH2O后,产生了新的能级,与SnS单层之间形成了较强的相互作用,这种相互作用提高了SnS单层吸附CH2O的灵敏度,最高可达到75.7%。与Pt类似,Pd修饰SnS吸附CH2O后同样产生了新的能级,且具有更大的吸附能和电荷转移,从而实现高达98.4%的灵敏度,比本征SnS单层高57.4倍。此外,适度的吸附能(-0.621 eV)确保了Pd修饰SnS单层在室温下具有良好的可逆性和合适的恢复时间(3.18 ms)。因此,SnS单层作为一种绿色环保的材料,展现了其在气体污染检测技术中的巨大潜力。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
莫秋燕
吴家隐
荆涛
关键词:  硫化锡单层  修饰  第一性原理  甲醛  气体传感器    
Abstract: In this work, we employ density functional theory calculations to investigate the adsorption behavior of CH2O on intrinsic SnS monolayers as well as SnS monolayers modified with Pt and Pd. We focus on changes in geometric structure, adsorption energy, band structure, density of states, charge density difference, recovery time, and sensitivity before and after adsorption. Our findings reveal that on the intrinsic SnS monolayer, the adsorption energy between CH2O molecules and the SnS monolayer is small, and the adsorption distance is long, resulting in insensitivity of the intrinsic SnS monolayer to CH2O. After Pt modified SnS monolayer adsorbs CH2O, new energy levels are generated, forming strong interactions with SnS monolayer. This interaction improves the sensitivity of SnS monolayer adsorbs CH2O, reaching up to 75.7%. Similar to Pt, Pd modified SnS adsorbs CH2O and generates new energy levels with greater adsorption energy and charge transfer, achieving a sensitivity of up to 98.4%, which is 57.4 times higher than the intrinsic SnS monolayer. Additionally, the moderate adsorption energy(-0.621 eV) ensures excellent reversibility and a suitable recovery time (3.18 ms) for Pd-modified SnS monolayers at room temperature. Thus, SnS monolayers, as environmentally friendly materials, exhibit immense potential in gas pollution detection technology.
Key words:  SnS monolayer    modify    first-principles    formaldehyde    gas sensor
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  TB34  
  O647.3  
基金资助: 凯里学院微纳与智能制造教育部工程研究中心重点研究方向项目(2024WZG09);黔东南州科技支撑计划项目(黔东南科合支撑〔2024〕0020号)
通讯作者:  *吴家隐,博士,广东开放大学(广东理工职业学院)工程技术学院副研究员。主要从事物联网、传感器等方面的研究。jiayinwu@foxmail.com   
作者简介:  莫秋燕,硕士,目前主要从事二维材料修饰改性及气敏特性方面的研究。
引用本文:    
莫秋燕, 吴家隐, 荆涛. 铂和钯修饰硫化锡吸附甲醛的电子及气敏特性研究[J]. 材料导报, 2025, 39(22): 24100250-7.
MO Qiuyan, WU Jiayin, JING Tao. Study on the Electronic and Gas Sensing Properties of Pt and Pd Modified Tin Sulfide Adsorption of Formaldehyde. Materials Reports, 2025, 39(22): 24100250-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100250  或          https://www.mater-rep.com/CN/Y2025/V39/I22/24100250
1 Wang Y H, Zhou Y, Wang Y J. Sensors and Actuators B:Chemical, 2020, 323, 128695.
2 Shao S F, Kim H W, Kim S S, et al. Applied Surface Science, 2020, 516, 145932.
3 Song M G, Choi J, Jeong H E, et al. Applied Surface Science, 2020, 529, 147189.
4 Bouchikhi B, Chludziński T, Saidi T, et al. Sensors and Actuators B:Chemical, 2020, 320, 128331.
5 Das S, Pandey D, Thomas J, et al. Advanced Materials, 2019, 31(1), 1802722.
6 Ui-Haq B, Alfaify S, Ahmed R, et al. Physical Review B, 2018, 97(7), 075438.
7 Tao L, Cinquanta E, Chiappe D, et al. Nature Nanotechnology, 2015, 10(3), 227.
8 Gillgren N, Wickramaratne D, Shi Y M, et al. 2D Materials, 2014, 2(1), 011001.
9 Ma S H, Yuan D Y, Wang Y R. Journal of Materials Chemistry C, 2018, 6(30), 8082.
10 Banai R E, Horn N W, Brownson J R S. Solar Energy Materials and Solar Cells, 2016, 150, 112.
11 He W K, Hong T, Wang D G, et al. Science China Materials, 2021, 64(12), 3051.
12 Xia C X, Du J, Xiong W Q, et al. Journal of Materials Chemistry, 2017, 5, 13400.
13 Tian H, Fan C, Liu G Z, et al. Applied Surface Science, 2019, 487, 1043.
14 Dragoman M, Dinescu A, Avram A, et al. Nanotechnology, 2022, 33(40), 405201.
15 Hu F F, Tang H Y, Tan C J, et al. IEEE Electron Device Letters, 2017, 38(7), 983.
16 Qin Y X, Wei Z J, Bai Y N. Vacuum, 2021, 183, 109792.
17 Shukla A, Gaur N K. Physica B:Condensed Matter, 2019, 572, 12.
18 Qiu P L, Qin Y X, Bai Y N, et al. Applied Surface Science, 2021, 570, 151155.
19 Yu G Y, Ge C Y, Wan H Q. Catalysts, 2022, 12(11), 1406.
20 He K, Jin Z, Chu X F, et al. RSC Advances, 2019, 9(49), 28439.
21 Govindan B, Madhu R, Abu-Haija M, et al. Catalysts, 2022, 12(10), 1180.
22 Zhu J T, Cai L J, Yin X M, et al. ACS Mano, 2022, 14(5), 5600.
23 Zhang Z S, Ye M N, Harvey E J, et al. Journal of the Electrochemical Society, 2019, 166(4), h135.
24 Qiu S J, Shen Y L, Wei G J, et al. Applied Catalysis B:Environmental, 2019, 259, 118036.
25 Kumar S, Lawaniya S D, Nelamarri S R, et al. ACS Applied Nano Materials, 2023, 6(17), 15479.
26 Kresse G, Furthmüller J. Physical Review B, 1996, 54(16), 11169.
27 Kresse G, Furthmüller J. Computational Materials Science, 1996, 6(1), 15.
28 Perdew J P, Burke K, Ernzerhof M. Physical Review Letters, 1996, 77(18), 3865.
29 Grimme S. Journal of Computational Chemistry, 2006, 27(15), 1787.
30 Soler J M, Artacho E, Gale J D, et al. Journal of Physics:Condensed Matter, 2002, 14, 2745.
31 Meir Y, Wingreen N S. Physical Review Letters, 1992, 68, 2512.
32 Aghaei S M, Aasi A, Farhangdoust S, et al. Applied Surface Science, 2021, 536, 147756.
33 Guo M, Zhao T F, Cui Z. Surface and Interfaces, 2024, 51, 104607.
34 Abbasi A. Materials Research Express, 2019, 6(7), 076410.
35 Feng C, Qin H B, Yang D G, et al. Materials, 2019, 12(4), 676.
36 Hafeez J, Islam M U, Ali S M, et al. Materials Science in Semiconductor Processing, 2024, 182, 108710.
37 Yeh C H. ACS Omega, 2020, 5(48), 31398.
38 Kadhim M M, Sadoon N, Gheni H A, et al. Computational and Theoretical Chemistry, 2023, 1219, 113941.
39 Al-Nadary H O, Eid K M, Badran H M, et al. Nanomaterials, 2023, 14(1), 7.
[1] 刘宇, 张健, 庞小通, 周小杰, 卢先正, 陈小敏, 李佳豪, 彭平. 镧镍系合金对氢化镁组织结构与储氢性能的影响及机理[J]. 材料导报, 2025, 39(8): 24040039-6.
[2] 陈阿青, 梁轻. Nb掺杂二氧化钛纳米管电子结构第一性原理计算[J]. 材料导报, 2025, 39(4): 23100185-6.
[3] 吴慧淋, 张宇飞, 董权, 张静. 基于第一性原理的间隙原子掺杂MgAlLiSbAg轻质高熵合金的结构和
性能研究
[J]. 材料导报, 2025, 39(22): 24090168-7.
[4] 李玉萍, 赵青, 章金正, 雷晓宇, 李丽, 木波, 杜青达, 李玉宝, 汪建, 左奕. 修饰纳米CeO2的制备及其复合纤维膜对体外磷活性影响研究[J]. 材料导报, 2025, 39(21): 25040225-7.
[5] 闫肃, 豆艳坤, 曹金利, 贺新福. 高熵合金结构及性能的第一性原理模拟预测[J]. 材料导报, 2025, 39(15): 24080206-10.
[6] 陈怀昊, 刘海博, 邓林红. Ti-25%Nb合金β、α″和ω相的力学性能和键合特征的第一性原理研究[J]. 材料导报, 2025, 39(15): 23100055-8.
[7] 蒋旭浩, 刘远超, 李耑, 徐一帆, 刘新昊, 李梓硕. 层状堆叠对α-石墨炔热电输运特性的影响[J]. 材料导报, 2025, 39(12): 24070118-6.
[8] 申笠蒙, 李玺, 张博. 点缺陷对二维锡烯材料结构、电学和磁学性质影响的第一性原理研究[J]. 材料导报, 2025, 39(12): 24050023-6.
[9] 白雪, 文杜林, 王云杰, 苟杰, 苏欣. 三元混晶AlP1-xAsx(x=0,0.125,0.25,0.375,0.5,0.625,0.75,0.875,1)的电子结构和力学性质的第一性原理研究[J]. 材料导报, 2025, 39(12): 23080043-5.
[10] 蒋旭浩, 刘远超, 李耑, 徐一帆, 李梓硕, 刘新昊. B、N掺杂对α-石墨炔热电输运特性的影响[J]. 材料导报, 2025, 39(10): 24050034-7.
[11] 吴迪, 林方敏, 张洪龙, 宋孟, 杨永, 殷兆良, 章小峰. 合金元素对bcc-Cu/NiAl共析出影响的第一性原理研究[J]. 材料导报, 2024, 38(9): 22070183-6.
[12] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[13] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[14] 苗瑞霞, 张德栋, 谢妙春, 王业飞, 杨小峰. 本征缺陷对δ-InSe光电性质的影响[J]. 材料导报, 2024, 38(23): 23080234-7.
[15] 范依航, 李政译, 郝兆朋. 切削镍基高温合金Ni、Fe、Cr原子在WC-Co硬质合金刀具中的扩散机制及对刀具性能的影响[J]. 材料导报, 2024, 38(23): 23070211-9.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[8] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[9] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
[10] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed