Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 25040225-7    https://doi.org/10.11896/cldb.25040225
  无机非金属及其复合材料 |
修饰纳米CeO2的制备及其复合纤维膜对体外磷活性影响研究
李玉萍1, 赵青2, 章金正1, 雷晓宇1, 李丽1, 木波1, 杜青达1, 李玉宝1, 汪建3, 左奕1,*
1 四川大学分析测试中心,纳米生物材料研究中心,成都 610064
2 昆明医科大学口腔医学院附属口腔医院,昆明 650500
3 成都理工大学材料与化学化工学院,成都 610059
Fabrication of Modified Nano-CeO2 and Their Composite Fibrous Membranes for Enhanced Phosphorus Activity: an in vitro Study
LI Yuping1, ZHAO Qing2, ZHANG Jinzheng1, LEI Xiaoyu1, LI Li1, MU Bo1, DU Qingda1, LI Yubao1, WANG Jian3, ZUO Yi1,*
1 Research Center for Nano-Biomaterials, Analytical and Testing Center, Sichuan University, Chengdu 610064, China
2 The Affiliated Hospital of Stomatology, School of Stomatology, Kunming Medical University, Kunming 650500, China
3 College of Materials and Chemistry & Chemical Engineering, Chengdu University of Technology, Chengdu 610059, China
下载:  全 文 ( PDF ) ( 19078KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用化学沉淀法制备氧化铈纳米颗粒(CeO2 NPs),并通过柠檬酸钠进行表面修饰(MCeO2),以改善纳米晶体的分散和酶催化特性。通过透射电子显微镜(TEM)观察其形貌变化,并结合X射线光电子能谱(XPS)和拉曼光谱对Ce3+含量及相对氧空位浓度进行半定量分析。结果表明,尽管柠檬酸钠修饰导致Ce3+含量和氧空位浓度有所降低,但MCeO2的催化脱磷活性和分散性均显著提升。进一步利用静电纺丝法制备聚氨酯负载MCeO2纤维膜,在高负载量情况下,修饰后的MCeO2仍能在聚氨酯基中保持良好的分散性,且催化脱磷效率明显优于未修饰样品。CCK-8实验证实材料具有优异的细胞相容性,碱性磷酸酶染色结果进一步表明该纤维膜具有良好的成骨诱导潜力。本研究为开发兼具优异分散性和高效催化脱磷活性的纳米复合生物材料提供了重要依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李玉萍
赵青
章金正
雷晓宇
李丽
木波
杜青达
李玉宝
汪建
左奕
关键词:  氧化铈纳米颗粒  柠檬酸钠修饰  电纺聚氨酯基纤维  分散性  催化脱磷活性    
Abstract: Cerium oxide nanoparticles (CeO2 NPs) were synthesized via a chemical precipitation method and subsequently surface-modified with sodium citrate (MCeO2) to enhance their dispersibility and enzyme-mimetic catalytic properties. Morphological characterization was performed using transmission electron microscopy (TEM), while X-ray photoelectron spectroscopy (XPS) and Raman spectroscopy were employed for semi-quantitative analysis of Ce3+ content and relative oxygen vacancy concentration. The findings show that although the citrate modification reduces both Ce3+ content and oxygen vacancy concentration, it significantly improves the catalytic dephosphorylation activity and dispersibility of MCeO2. Further fabrication of polyurethane-supported MCeO2 fiber membranes via electrospinning demonstrates that the modified MCeO2 maintains excellent dispersibility within the polymer matrix even at high loading concentrations, while exhibiting markedly superior catalytic dephosphorylation efficiency compared to unmodified sample. CCK-8 assays confirm good cytocompatibility, and alkaline phosphatase staining further reveals the osteogenic induction potential of these fiber membranes. This study provides valuable insights for developing nanocomposite biomaterials with optimal dispersibility and efficient catalytic dephosphorylation activity.
Key words:  cerium oxide nanoparticles    sodium citrate modification    electrospun polyurethane-based fiber    dispersibility    catalytic dephosphorization activity
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TB32  
基金资助: 国家重点研发计划(2021YFA1201300;2021YFA1201304);四川省国际科技创新合作项目(2024YFHZ0308)
通讯作者:  *左奕,四川大学分析测试中心研究员、博士研究生导师。目前主要开展纳米有机/无机复合生物材料研究,包括磷灰石晶体机制研究;高分子及其复合活性材料的制备及评价;超细电纺纤维制备及应用研究;组织工程支架及降解聚合物载药控释等方向的研究。zoae@scu.edu.cn   
作者简介:  李玉萍,四川大学分析测试中心硕士研究生,主要研究领域为纳米生物材料。
引用本文:    
李玉萍, 赵青, 章金正, 雷晓宇, 李丽, 木波, 杜青达, 李玉宝, 汪建, 左奕. 修饰纳米CeO2的制备及其复合纤维膜对体外磷活性影响研究[J]. 材料导报, 2025, 39(21): 25040225-7.
LI Yuping, ZHAO Qing, ZHANG Jinzheng, LEI Xiaoyu, LI Li, MU Bo, DU Qingda, LI Yubao, WANG Jian, ZUO Yi. Fabrication of Modified Nano-CeO2 and Their Composite Fibrous Membranes for Enhanced Phosphorus Activity: an in vitro Study. Materials Reports, 2025, 39(21): 25040225-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25040225  或          https://www.mater-rep.com/CN/Y2025/V39/I21/25040225
1 Zhao Q, Ni Y Q, Wei H J, et al. Periodontology 2000, 2024, 94(1), 213.
2 Kong X P, Zheng T Y, Wang Z Y, et al. Theranostics, 2024, 14(11), 4438.
3 Peng Y C, Zhuang Y L, Liu Y, et al. Exploration, 2023, 3(4), 20210043.
4 Li J Q, Cai X D, Jiang P, et al. Advanced Materials, 2024, 36(8), 2307337.
5 Hang C W, Moawad M S, Lin Z Y, et al. Journal of Nanobiotechnology, 2024, 22(1), 23.
6 Yang J X, Xiao S H, Deng J J, et al. Journal of Nanobiotechnology, 2024, 22(1), 21.
7 Janos P, Ederer J, Dosek M, et al. Environmental Science-Nano, 2019, 6(12), 3684.
8 Yue Z Y, Li J L, Tang M L, et al. Advanced Healthcare Materials, 2024, 13(9), 2303222.
9 Tang M L, Ni J T, Yue Z Y, et al. Angewandte Chemie-International Edition, 2024, 63(6), e202315031.
10 Panwar V, Singh A, Bhatt M, et al. Signal Transduction and Targeted Therapy, 2023, 8(1), 25.
11 Sabouny R, Shutt T E. Trends in Biochemical Sciences, 2020, 45(7), 564.
12 Hernando N, Gagnon K, Lederer E. Physiological Reviews, 2021, 101(1), 1.
13 Wang X G, Yu Y M, Ji L L, et al. Bioactive Materials, 2021, 6(12), 4517.
14 Ha M K, Shim Y J, Yoon T H. Environmental Science-Nano, 2018, 5(2), 446.
15 Panferov V G, Zhang W J, D’Abruzzo N, et al. ACS Nano, 2024, 18(51), 34870.
16 Zhang J, Wang Z H, Lin X E, et al. Angewandte Chemie-International Edition, 2025, 64(4), e202416686.
17 Wei F, Neal C J, Sakthivel T S, et al. Bioactive Materials, 2023, 21, 547.
18 Shahroudi S, Parvinnasab A, Salahinejad E, et al. Carbohydrate Polymers, 2025, 349, 12.
19 Ren S S, Zhou Y, Zheng K, et al. Bioactive Materials, 2022, 7, 242.
20 Li J M, Kang F, Gong X S, et al. Faseb Journal, 2019, 33(5), 6378.
21 Hancock M L, Yokel R A, Beck M J, et al. Applied Surface Science, 2021, 535, 12.
22 Camacho-Ríos M L, Cristóbal-García J D, Lardizabal-Gutiérrez D, et al. Ceramics International, 2020, 46(11), 18791.
23 Manto M J, Xie P F, Wang C. ACS Catalysis, 2017, 7(3), 1931.
24 Zhao Q, Chen J Q, Tang J J, et al. Advanced Functional Materials, 2024, 34(25), 2316428.
25 International Organization for Standardization. ISO. Biological evaluation of medical devices—Part 5: Tests for in vitro cytotoxicity, Switzerland, 2009, pp. 34.
26 An C, Zhou Y H, Chen C H, et al. Advanced Materials, 2020, 32(38), 2002352.
27 Marler B, Oberhagemann U, Vortmann S, et al. Microporous Materials, 1996, 6(5-6), 375.
28 Venkataronappa A, Bankaitis J, Seo J. Journal of Industrial and Engineering Chemistry, 2024, 138, 623.
29 Wu Z L, Li M J, Howe J, et al. Langmuir, 2010, 26(21), 16595.
30 López J M, Gilbank A L, García T, et al. Applied Catalysis B-Environmental, 2015, 174, 403.
31 Boonprasertpoh A, Chantarangkul P, Thiangtham S, et al. Cellulose, 2024, 31(5), 2957.
32 Gode F, Guneri E, Baglayan O. Applied Surface Science, 2014, 318, 227.
33 Chen W W, Liu Z L, Li Y X, et al. Journal of Power Sources, 2021, 482, 228947.
34 Yang H, Zheng M, Zhang Y, et al. Biomaterials translational, 2024, 5(1), 59.
35 Guo W Y, Wang W H, Xu P Y, et al. Biomaterials translational, 2024, 5(2), 114.
36 Chen J Q, Zhao Q, Tang J J, et al. ACS Applied Materials & Interfaces, 2024, 16(26), 33005.
37 Silina E V, Stupin V A, Manturova N E, et al. International Journal of Molecular Sciences, 2023, 24(19), 24.
38 An J, Yang H, Zhang Q, et al. Life Sciences, 2016, 147, 46.
[1] 蒋佳骏, 吴张永, 孟仙, 刘大仲, 母昆杨, 刘文龙, 朱启晨, 蔡昌礼. 利用纳米Mo改善液态金属基SiC/石墨烯混合纳米流体分散性与流动性[J]. 材料导报, 2025, 39(10): 24030153-11.
[2] 王晓媛, 张力冉, 王栋民, 陈洋, 张辰, 翟馨玥. 微波诱导合成聚羧酸减水剂的聚合动力学与热/非热效应研究[J]. 材料导报, 2025, 39(10): 24030177-6.
[3] 佘欢, 时磊, 董安平. 钛基石墨烯复合材料的分散性、界面结构及力学性能[J]. 材料导报, 2024, 38(5): 23030202-8.
[4] 李晓丹, 刘宏宇, 何瑞, 王锋. 石墨烯改性及在有机涂层中的形态[J]. 材料导报, 2023, 37(17): 21100195-9.
[5] 陈景, 杨长辉, 高育欣, 杨文, 王福涛, 刘明, 曾超. 微交联降粘型聚羧酸减水剂的合成及其在低水胶比体系中的作用[J]. 材料导报, 2022, 36(9): 20090167-8.
[6] 张文健, 郑浩, 李博文, 宋国君, 马丽春. 超支化磷腈衍生物修饰GO及其环氧复合材料的力学性能研究[J]. 材料导报, 2022, 36(8): 20110164-4.
[7] 徐建林, 王涛, 康成虎, 杨文龙, 牛磊. 阻燃剂研究与应用进展及问题思考[J]. 材料导报, 2022, 36(10): 20110227-9.
[8] 孙国文, 张营, 闫娜, 王亚倩, 李占华. 水下不分散混凝土的抗分散性能设计及其表征研究进展[J]. 材料导报, 2022, 36(1): 20040167-11.
[9] 熊亚, 江猛, 李宜航, 吴江兵, 杨航, 熊玉竹. 白炭黑负载抗氧剂在天然橡胶中的分散性及防老化作用[J]. 材料导报, 2021, 35(6): 6200-6205.
[10] 孙国文, 王朋硕, 张营, 闫娜. 水下不分散混凝土性能的研究进展[J]. 材料导报, 2021, 35(3): 3092-3103.
[11] 伍勇华, 祝婷, 党梓轩, 李莹, 李国新. 中和与否对聚羧酸减水剂性能的影响及机理分析[J]. 材料导报, 2020, 34(Z1): 592-595.
[12] 王瑞平,袁长龙,陶劲松. 纳米纤维素改性及其在柔性电子方面的应用[J]. 材料导报, 2019, 33(17): 2949-2957.
[13] 张明义, 袁帅, 钟敏, 柏劲松. 金属材料和结构的疲劳寿命预测概率模型及应用研究进展[J]. 《材料导报》期刊社, 2018, 32(5): 808-814.
[14] 于嘉伦, 徐丹, 任丹, 谢东梅, 高燕利. 橘皮还原法和硼氢化钠还原法制备的纳米银的结构和性能比较[J]. 材料导报, 2018, 32(20): 3489-3495.
[15] 吴帅帅, 刘琴, 徐丹. 利用笼形聚倍半硅氧烷增强多壁碳纳米管在水溶液中的分散性[J]. 《材料导报》期刊社, 2017, 31(6): 110-114.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed