Please wait a minute...
材料导报  2025, Vol. 39 Issue (9): 24050045-7    https://doi.org/10.11896/cldb.24050045
  高分子与聚合物基复合材料 |
利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶
陈继伟1,*, 朱慧雯1, 王海镔1, 桑建权1, 李艳花1, 熊芬2, 罗建新1,*
1 湖南工学院材料科学与工程学院,湖南 衡阳 421002
2 湖南工学院计算机科学与工程学院,湖南 衡阳 421002
Hofmeister Effect-assisted One Step Fabrication of Ion-conductive, Anti-freezing, and Tough PVA Hydrogels
CHEN Jiwei1,*, ZHU Huiwen1, WANG Haibin1, SANG Jianquan1, LI Yanhua1, XIONG Fen2, LUO Jianxin1,*
1 School of Materials Science and Engineering, Hunan Institute of Technology, Hengyang 421002, Hunan, China
2 School of Computer Science and Engineering, Hunan Institute of Technology, Hengyang 421002, Hunan, China
下载:  全 文 ( PDF ) ( 18746KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于水凝胶的含水量较高,其力学性能和耐低温性能普遍较低。通常多采用降低水含量提高水凝胶力学性能和耐低温性能,但这不利于水凝胶的应用。本工作采用一步浸泡法利用聚乙烯醇(PVA)水凝胶的Hofmeister效应诱导PVA高分子链自组装形成均匀的疏水缠结交联网络和氢键交联网络结构,结合Hofmeister效应中引入的无机盐离子与水分子的水合作用,赋予PVA水凝胶良好的机械柔韧性和耐低温性能,构建了一种具有较高机械柔韧性(断裂强度和断裂伸长率分别为25.02 MPa和935%)和耐低温性能(凝固点为-47.6 ℃)的PVA水凝胶。此外,盐离子的引入还可以同时为水凝胶的离子导电提供自由移动离子。这种综合性能优异的水凝胶可以应用于具有较宽工作温度和力学性能要求的柔性离子导电领域。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈继伟
朱慧雯
王海镔
桑建权
李艳花
熊芬
罗建新
关键词:  聚乙烯醇水凝胶  物理交联网络  力学性能  耐低温性能    
Abstract: Due to the hydrogels with high-water content, hydrogels typically exhibit low mechanical properties and anti-freezing performance. Usually, these performances were improved by reducing the water content of the hydrogels. While this limited the applications of the hydrogels. This work used a one-step soaking method, utilizing the Hofmeister effect to induce the polyvinyl alcohol (PVA) polymer chain self-assemble forming a uniform hydrophobic entangled cross-linked network and hydrogen bond cross-linked network structure. The inorganic salt ions introduced in the Hofmeister effect can also form hydration with water molecules. These can endow the PVA hydrogels good mechanical flexibility and anti-freezing performance, constructing the PVA hydrogels with high mechanical flexibility (breaking strength and elongation at break of 25.02 MPa and 935%, respectively) and anti-freezing performance (freezing point of -47.6 ℃). Besides, the introduction of salt ions can also provide free-moving ions for the ionic conductivity of the hydrogels. This hydrogel with excellent comprehensive properties can be applied to the field of flexible ionic conductivity with wide operating temperature and mechanical performance requirements.
Key words:  polyvinyl alcohol (PVA) hydrogels    physical-crosslinked network    mechanical properties    anti-freezing performance
出版日期:  2025-05-10      发布日期:  2025-04-28
ZTFLH:  TQ311  
基金资助: 湖南工学院科研启动项目(HQ23037);湖南省教育厅优秀青年项目(23B0827);湖南省应用特色学科材料科学与工程学科(湘教通〔2022〕351 号)
通讯作者:  *陈继伟,工学博士,湖南工学院材料科学与工程学院讲师。目前主要从事功能性高分子结构-性能构建和高分子材料在柔性储能领域的应用等方面的工作。chenjiwei@hnit.edu.cn; 罗建新,工学博士,湖南工学院材料科学与工程学院教授、博士研究生导师。主要从事光电、催化等功能性高分子材料的研究。luojianxin392@163.com   
引用本文:    
陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
CHEN Jiwei, ZHU Huiwen, WANG Haibin, SANG Jianquan, LI Yanhua, XIONG Fen, LUO Jianxin. Hofmeister Effect-assisted One Step Fabrication of Ion-conductive, Anti-freezing, and Tough PVA Hydrogels. Materials Reports, 2025, 39(9): 24050045-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24050045  或          https://www.mater-rep.com/CN/Y2025/V39/I9/24050045
1 Chen J. Studies on fabrication and properties of physical crosslinked PVA-based hydrogels with antifreezing and conductivity. Ph. D. Thesis, Jiangnan University, China, 2023 (in Chinese).
陈继伟. 耐低温物理交联PVA 基水凝胶的强韧性调控及导电性能研究. 博士学位论文, 江南大学, 2023.
2 He H, Li H, Pu A, et al. Nature Communications, 2023, 14(1), 759.
3 Wang C, Liu Y, Qu X, et al. Advanced Materials, 2022, 34(16), 2105416.
4 Jian Y, Handschuh-Wang S, Zhang J, et al. Materials Horizons, 2021, 8(2), 351.
5 Zhao X. Soft Matter, 2014, 10(5), 672.
6 Sun J Y, Zhao X, Illeperuma W R K, et al. Nature, 2012, 489(7414), 133.
7 Lin S, Liu J, Liu X, et al. Proceedings of the National Academy of Sciences, 2019, 116(21), 10244.
8 Chen J, Shi D, Yang Z, et al. Journal of Power Sources, 2022, 532, 231326.
9 Chen J, Yang Z, Shi D, et al. Journal of Applied Polymer Science, 2020, 138(10), 49987.
10 Chen J, Shi D, Yang Z, et al. Journal of Materials Science, 2021, 56(14), 8887.
11 Xu L, Qiu D. Science China Materials, 2022, 65(2), 547.
12 Chen J, Yu Q, Shi D, et al. ACS Applied Energy Materials, 2021, 4(9), 9353.
13 Morelle X P, Illeperuma W R, Tian K, et al. Advanced Materials, 2018, 30(35), 1801541.
14 Sun W, Wang J, He M. Carbohydrate Polymers, 2023, 303, 120446.
15 Fang X. Mechanically robust and highly elastic polymeric hydrogels with self-healing ability. Ph. D. Thesis, Jilin University, China, 2020 (in Chinese).
房旭. 高强度、高弹性与自修复的聚合物水凝胶. 博士学位论文, 吉林大学, 2020.
16 Liu D, Cao Y, Jiang P, et al. Small, 2023, 19(14), 2206819.
17 Yan G, He S, Chen G, et al. Nano-Micro Letters, 2022, 14(1), 84.
18 Lin S, Liu X, Liu J, et al. Science Advances, 2019, 5(1), eaau8528.
19 Hassan C M, Peppas N A. Macromolecules, 2000, 33(7), 2472.
20 Zhu X, Ji C, Meng Q, et al. Small, 2022, 18(16), 2200055.
21 Yu Z, Liu J, He H, et al. Carbohydrate Polymers, 2021, 255, 117485.
22 Holloway J L, Lowman A M, Palmese G R. Soft Matter, 2013, 9(3), 826.
23 Liu J, Lin S, Liu X, et al. Nature Communications, 2020, 11(1), 1071.
24 Gong J P. Science, 2014, 344(6180), 161.
25 Sun M, Li H, Hou Y, et al. Science Advances, 2023, 9(7), eade6973.
26 Wang H, Lu J, Huang H, et al. Journal of Colloid and Interface Science, 2021, 588, 295.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[7] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[8] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[9] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[10] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[11] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[12] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[13] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[14] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
[15] 果春焕, 王磊, 邵帅齐, 王树邦, 李渐亮, 孙倩斐, 姜风春. 激光粉末床熔融金属点阵结构力学性能研究进展[J]. 材料导报, 2025, 39(6): 24040109-10.
[1] Pei HE, Weizhi YAO, Jianming LYU, Bo GAO, Xianrong LI. Radiation Resistance Design and Nanoscale Second-phase Particles Characterization for ODS Steels: a Review[J]. Materials Reports, 2018, 32(1): 34 -40 .
[2] ZHANG Wenpei, LI Huanhuan, HU Zhili, QIN Xunpeng. Progress in Constitutive Relationship Research of Aluminum Alloy for Automobile Lightweighting[J]. Materials Reports, 2017, 31(13): 85 -89 .
[3] YANG Xiaojie, DONG Binghai, CHEN Fengxiang, WAN Li, ZHAO Li, WANG Shimin. One-dimensional TiO2 Photoanodes for Dye-sensitized Solar Cells: Fabrication and Applications[J]. Materials Reports, 2017, 31(17): 138 -145 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam[J]. Materials Reports, 2017, 31(24): 179 -181 .
[6] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[7] ZHANG Yong, WANG Xiongyu, YU Jing, CAO Weicheng,FENG Pengfa, JIAO Shengjie. Advances in Surface Modification of Molybdenum and Molybdenum Alloys at Elevated Temperature[J]. Materials Reports, 2017, 31(7): 83 -87 .
[8] FU Yu, HE Junbao, ZHANG Ping, LENG Yumin, MA Benyuan, LI Jiyan. Single Crystal Growth and Physical Properties of Layered Transitional Metal Bismuthide BaAg2-δBi2[J]. Materials Reports, 2018, 32(12): 2043 -2046 .
[9] LIU Huan, HUA Zhongsheng, HE Jiwen, TANG Zetao, ZHANG Weiwei, LYU Huihong. Indium Recovery from Waste Indium Tin Oxide: a Technological Review[J]. Materials Reports, 2018, 32(11): 1916 -1923 .
[10] HUANG Wenxin, LI Jun, XU Yunhe. Research Progress on Manganese Dioxide Based Supercapacitors[J]. Materials Reports, 2018, 32(15): 2555 -2564 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed