Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24020129-6    https://doi.org/10.11896/cldb.24020129
  无机非金属及其复合材料 |
超高性能混凝土-普通混凝土界面粘结性能研究
王艳1,2,*, 常天风1, 杨子凡1, 李伊岚1
1 西安建筑科技大学材料科学与工程学院, 西安 710055
2 绿色建筑全国重点实验室, 西安 710055
Study on Shear Bond Performance of UHPC-NC Interface
WANG Yan1,2,*, CHANG Tianfeng1, YANG Zifan1, LI Yilan1
1 School of Materials Science and Engineering, Xi'an University of Architecture and Technology, Xi'an 710055, China
2 State Key Laboratory of Green Building, Xi'an 710055, China
下载:  全 文 ( PDF ) ( 13664KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 超高性能混凝土(UHPC)因其优异的力学与耐久性能在结构修复与加固领域具有显著的优势和巨大潜力,UHPC-普通混凝土(NC)界面粘结性能对于实现良好的加固效果至关重要。本工作基于斜剪试验,分析了UHPC强度和加固厚度对UHPC-NC界面粘结性能的影响。结果表明,UHPC与NC界面粘结性能优异,斜剪试件破坏形式多表现为NC破坏、界面和NC同时破坏。UHPC-NC界面粘结强度随着UHPC强度的提高而小幅度提升,UHPC强度等级从C100提升至C140,试件的界面粘结强度提升幅度在10.63%~14.66%之间;UHPC加固厚度对界面粘结强度影响更加显著,相较75 mm厚的试件,厚度为150 mm的试件的界面粘结强度最大可提高38%。基于试验结果建立了考虑UHPC-NC界面粗糙度、基体NC强度、UHPC强度和厚度的UHPC-NC界面抗剪强度计算公式,计算结果与试验结果吻合良好。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
王艳
常天风
杨子凡
李伊岚
关键词:  超高性能混凝土  普通混凝土  斜剪试验  界面抗剪强度  荷载-滑移曲线    
Abstract: Ultra-high performance concrete (UHPC) has significant advantages and great potential in the field of structural repair and reinforcement due to its excellent mechanical and durability properties.The bond performance of UHPC-normal concrete (NC) interface is very important for achieving a good reinforcement effect.Based on the oblique shear test,here analyzed the influence of UHPC strength and reinforcement thickness on the bond performance of UHPC-NC interface.The results show that the interface bond performance between post-cast UHPC and NC is excellent,and the failure modes of oblique shear specimens are mostly NC failure or simultaneous failure of interface and NC.The bond strength of UHPC-NC interface increases slightly with the increase of UHPC strength.The strength grade of UHPC increases from C100 to C140,and the interfacial bond strength of the specimen increases by 2.58 MPa (14.66%).The thickness of UHPC reinforcement has a more significant effect on the interfacial bond strength.The interfacial bond strength of the specimen with a thickness of 150 mm can be increased by 6.68 MPa (38%) compared with the specimen with a thickness of 75 mm.Based on the test results,a formula for calculating the shear strength of UHPC-NC interface considering the roughness of UHPC-NC interface,the strength of matrix NC,the strength and thickness of UHPC was established.The calculation results by the formula agree well with the test results.
Key words:  ultra-high performance concrete    normal concrete    oblique shear test    interface shear strength    load-slip curve
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TU528  
基金资助: 国家优秀青年科学基金(52222806);陕西省杰出青年科学基金(2022JC-20)
通讯作者:  *王艳,西安建筑科技大学教授、博士研究生导师。主要从事隧道与地下工程结构耐久性领域的研究工作,包括一般地质环境混凝土衬砌耐久性、高地热环境混凝土衬砌耐久性、隧道衬砌损伤的智能感知技术等。wangyanwjx@126.com   
引用本文:    
王艳, 常天风, 杨子凡, 李伊岚. 超高性能混凝土-普通混凝土界面粘结性能研究[J]. 材料导报, 2025, 39(7): 24020129-6.
WANG Yan, CHANG Tianfeng, YANG Zifan, LI Yilan. Study on Shear Bond Performance of UHPC-NC Interface. Materials Reports, 2025, 39(7): 24020129-6.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020129  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24020129
1 Wang T, Tan L, Xie S, et al. Tunnelling and Underground Space Technology, 2018, 76, 92.
2 Tayeh B A, Bakar B H A, Johari M A M, et al. Journal of Adhesion Science and Technology, 2013, 27(16), 1790.
3 Wu C, Chu F W, Gong M Z, et al. Materials Reports, 2023, 37(24), 163 (in Chinese).
吴琛, 储福玮, 龚明子, 等. 材料导报, 2023, 37(24), 163.
4 Zhang Y, Wu J, Shao X D, et al. China Civil Engineering Journal, 2021, 54(7), 81 (in Chinese).
张阳, 吴洁, 邵旭东, 等. 土木工程学报, 2021, 54(7), 81.
5 Wu Y X, Zheng X Y, Huang W, et al. Materials Reports, 2023, 37(16), 144 (in Chinese).
吴应雄, 郑新颜, 黄伟, 等. 材料导报, 2023, 37(16), 144.
6 Oesterlee C. epfl, DOI:10.5075/epfl-thesis-4848.
7 Safdar M, Matsumoto T, Kakuma K. Composite Structures, 2016, 157, 448.
8 Shao X D, Qiu M H, Yan B F et al. Materials Reports, 2017, 31(23), 33 (in Chinese).
邵旭东, 邱明红, 晏班夫, 等. 材料导报, 2017, 31(23), 33.
9 Tayeh B A, Bakar B H A, Johari M A M, et al. Construction and Building Materials, 2012, 36, 538.
10 Munoz M A C, Harris D K, Ahlborn T M, et al. Journal of Materials in Civil Engineering, 2014, 26(8), 839.
11 Harris D K, Carbonell Muñoz M A, Gheitasi A, et al. Advances in Civil Engineering Materials, 2015, 4(2), 75.
12 Wu X G, Zhang X C. Journal of Building Structures. 2018, 39(10), 8 (in Chinese).
吴香国, 张孝臣. 建筑结构学报, 2018, 39(10), 8.
13 Ministry of Communications of the People's Republic of China. Technical specifications for strengthening of highway tunnel:JTG/T 5440-2018, China communication press, China, 2018 (in Chinese).
中华人民共和国交通部, 公路隧道加固技术规范:JTG/T 5440-2018, 人民交通出版社, 2018.
14 Lu K, Pang Z, Xu Q, et al. Cement and Concrete Composites, 2022, 133, 104691.
15 Ministry of Housing and Urban-Rural Development, People's Republic of China. Standard for test method of concrete physical and mechanical pro-perties, China Architecture & Building Press, China, 2019(in Chinese).
中华人民共和国住房与城乡建设部. 混凝土物理力学性能试验方法标准, 中国建筑工业出版社, 2019.
16 ASTM C882/C882M-13a, Standard test method for bond strength of epoxy-resin systems used with concrete by slant shear. West Conshohocken, ASTM International, 2013.
17 Concrete repair guide:ACI 546R-04, American Concrete Institute, USA, 2004.
18 American Association of State Highway and Transportation Officials. AASHO LRFD bridge design specifications. Washington. DC, 2020.
19 British Standards Institution. Eurocode 2:design of concrete structures:part 1:general rules and rules or buildings:BS EN 1992-1-1. British Standards Institutions, U. N. 2004.
20 Xu W Q. Calculation method of shear strength and bond slip constitutive model of the new-to-old concrete interface. Master's Thesis, Southwest Jiaotong University, China, 2021 (in Chinese).
徐文强. 新老混凝土结合面抗剪强度计算方法与粘结-滑移本构模型. 硕士学位论文, 西南交通大学, 2021.
21 Guo J J. Study on mechanical properties of new and old concrete bonding after high temperature. Ph. D. Thesis, Dalian University of Technology, China, 2003 (in Chinese).
郭进军. 高温后新老混凝土粘结的力学性能研究. 博士学位论文, 大连理工大学, 2003.
22 Zhang Y, Zhu P, Liao Z, et al. Construction and Building Materials, 2020, 235, 117431.
23 Long J, Chen Q, Jiang Z W. China Concrete and Cement Products. 2019(4), 5 (in Chinese).
龙杰, 陈庆, 蒋正武. 混凝土与水泥制品, 2019(4), 5.
24 Jiang X, Song H, Li K, et al. Advances in Materials Science and Engineering, 2023, 2023, 3169912.
25 Robalo K, do Carmo R, Costa H, et al. Construction and Building Materials, 2021, 304, 124603.
[1] 王耀, 郑新颜, 黄伟, 吴应雄, 黄雅莹, 张恒春, 张峰. 超高性能混凝土-花岗岩石材界面的抗剪性能研究[J]. 材料导报, 2025, 39(6): 24010107-10.
[2] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[3] 王艳, 李伊岚, 杨子凡, 常天风, 孙琳琳. OPC-SAC复合胶凝体系对超高性能混凝土性能的影响[J]. 材料导报, 2025, 39(2): 23120218-7.
[4] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[5] 杨简, 李洋, 陈宝春, 徐港, 黄卿维. UHPC直拉试验方法与本构关系研究[J]. 材料导报, 2024, 38(6): 22110263-9.
[6] 褚洪岩, 汤金辉, 王群, 高李, 赵志豪. 采用纳米氧化铝制备高弹性模量超高性能混凝土的可行性研究[J]. 材料导报, 2024, 38(5): 22110073-6.
[7] 孙嘉伦, 张春晓, 毛继泽, 李明哲, 高小建. 养护制度对超高性能混凝土强度的影响机理[J]. 材料导报, 2024, 38(18): 23050059-5.
[8] 陈聪聪, 吴泽媚, 胡翔, 史才军. 钢纤维形状和养护制度对超高性能混凝土强度及韧性的影响[J]. 材料导报, 2024, 38(15): 23030088-11.
[9] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[10] 李少杰, 张云峰, 张玉令, 闫军, 杜仕国, 陈博. 纳米改性超高性能混凝土板在爆炸荷载下的动态响应试验研究[J]. 材料导报, 2024, 38(11): 22110130-9.
[11] 刘金涛, 崔娇伟, 周煜, 钱如胜, 孔德玉. 三维石墨烯-碳纳米管对超高性能混凝土机敏性能的影响[J]. 材料导报, 2024, 38(11): 23010135-8.
[12] 杨医博, 夏英淦, 刘少坤, 肖祺枫, 郭文瑛, 王恒昌. 铣削型钢纤维与超高性能混凝土的界面粘结性能研究[J]. 材料导报, 2023, 37(4): 22020028-9.
[13] 吴琛, 储福玮, 龚明子, 曾志攀. 免蒸养超高性能混凝土-既有混凝土界面粘结性能试验研究[J]. 材料导报, 2023, 37(24): 23010119-8.
[14] 边晨, 郭君渊, 肖建庄, 赵长军. 纳米偏高岭土及细骨料对UHPC力学性能的影响[J]. 材料导报, 2023, 37(23): 22070261-5.
[15] 郭柳君, 王凯, 王锦瑜, 胡仕梅, 余国庆. UHPC功能梯度湿接缝酸雨腐蚀断裂性能试验研究[J]. 材料导报, 2023, 37(19): 22040239-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed