Please wait a minute...
材料导报  2025, Vol. 39 Issue (7): 24020152-5    https://doi.org/10.11896/cldb.24020152
  金属与金属基复合材料 |
退火工艺对Mg-8Li-3Al-2Zn合金挤压板材显微组织与力学性能的影响
陈黎松1,2,3, 刘金学3,4, 解海涛1,3, 刘志鹏1,4, 宋新宇1,3, 肖阳1,2,3,4,*, 关绍康1,2, 何季麟1,2
1 郑州大学材料科学与工程学院, 郑州 450001
2 中原关键金属实验室, 郑州 450001
3 郑州轻研合金科技有限公司, 郑州 450041
4 河南空天新材料研究院有限公司, 郑州 450100
Effects of Annealing Treatment on Microstructures and Mechanical Properties of Extruded Mg-8Li-3Al-2Zn Plates
CHEN Lisong1,2,3, LIU Jinxue3,4, XIE Haitao1,3, LIU Zhipeng1,4, SONG Xinyu1,3, XIAO Yang1,2,3,4,*, GUAN Shaokang1,2, HE Jilin1,2
1 School of Materials Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
2 Zhongyuan Critical Metals Laboratory, Zhengzhou 450001, China
3 Zhengzhou Light Alloy Institute Co.,Ltd., Zhengzhou 450041, China
4 Henan Aerospace New Materials Research Institute Co.,Ltd., Zhengzhou 450100, China
下载:  全 文 ( PDF ) ( 26940KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用光学显微镜(OM)、X射线衍射(XRD)、电子背散射衍射(EBSD)等手段研究了Mg-8Li-3Al-2Zn(LAZ832)合金挤压板材在300~420 ℃内退火15 min后的显微组织与力学性能。结果表明,镁锂合金经挤压后α-Mg与β-Li相均发生动态再结晶,并弥散析出大量亚稳相MgLi2Al。挤压板材经300 ℃退火后二次相MgLi2Al相消失;340 ℃退火后,初生相AlLi相开始溶解;380 ℃退火后,MgLi2Al相和AlLi相近乎完全溶解,同时合金发生静态再结晶与长大,α-Mg相织构类型发生变化,由柱面{1120}〈0001〉织构转变为柱面{1120}〈0001〉和{1120}〈1010〉织构;进一步升高退火温度至420 ℃,晶粒明显长大。相比挤压态合金,在固溶强化和再结晶软化的综合作用下,随着退火温度的升高,合金的强度出现先增加后降低的趋势。其中合金在380 ℃退火后性能最优,此时合金强塑性均得到提高,屈服强度提升18.8%,抗拉强度提升13.8%,伸长率提升7.5%。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈黎松
刘金学
解海涛
刘志鹏
宋新宇
肖阳
关绍康
何季麟
关键词:  退火  镁锂合金  固溶强化  再结晶  织构    
Abstract: The microstructure and mechanical properties of as-extruded Mg-8Li-3Al-2Zn (LAZ832) alloy after annealing within the temperature range of 300—420 ℃ for 15 minutes were investigated by means of optical microscope (OM), X-ray diffraction (XRD) and electron backscatter diffraction (EBSD). The results show that the α-Mg and β-Li phases of the Mg-Li alloy undergo dynamic recrystallization after extrusion, and a large amount of metastable phase MgLi2Al is dispersed. The secondary MgLi2Al phase disappeared after the extruded sheets were annealed at 300 ℃; after annealing at 340 ℃, the primary AlLi phase began to dissolve; after annealing at 380 ℃, the MgLi2Al and AlLi phases were basically redissolved, and at the same time, the alloy underwent static recrystallization with grain growth, and the texture type of α-Mg phase changed from {1120}〈0001〉 prismatic texture to {1120}〈0001〉 and {1120}〈1010〉 prismatic texture; further increasing the annealing temperature to 420 ℃, grain growth was obvious. The strength of the alloy increases and then decreases with increasing annealing temperature due to the combined effect of solid solution strengthening and recrystallization softening, as compared to the extruded alloy. The alloy achieves optimum performance after annealing at 380 ℃, with improved strength and plasticity. The yield strength increases by 18.8%, the tensile strength increases by 13.8%, and the elongation increases by 7.5%.
Key words:  annealing    magnesium-lithium alloys    solid solution strengthening    recrystallization    texture
出版日期:  2025-04-10      发布日期:  2025-04-10
ZTFLH:  TG15  
基金资助: 中央军委装备发展部共性技术项目(50922010302);“慧眼行动”项目(619672D6);中原关键金属实验室研究基金(GJJSGFZD202305);中原科技创业领军人才资助项目(224300510014);国家自然科学基金面上项目(51974281)
通讯作者:  *肖阳,博士,河南省中原科技创业领军人才,郑州大学特聘教授、硕士研究生导师。目前主要从事铝锂、镁锂等铝镁轻合金设计及产业化技术开发工作。905xy@163.com   
作者简介:  陈黎松,郑州大学材料科学与工程学院2021级硕士研究生。在肖阳博士的指导下进行研究,目前主要研究领域为镁锂合金材料的设计与加工。
引用本文:    
陈黎松, 刘金学, 解海涛, 刘志鹏, 宋新宇, 肖阳, 关绍康, 何季麟. 退火工艺对Mg-8Li-3Al-2Zn合金挤压板材显微组织与力学性能的影响[J]. 材料导报, 2025, 39(7): 24020152-5.
CHEN Lisong, LIU Jinxue, XIE Haitao, LIU Zhipeng, SONG Xinyu, XIAO Yang, GUAN Shaokang, HE Jilin. Effects of Annealing Treatment on Microstructures and Mechanical Properties of Extruded Mg-8Li-3Al-2Zn Plates. Materials Reports, 2025, 39(7): 24020152-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24020152  或          https://www.mater-rep.com/CN/Y2025/V39/I7/24020152
1 Zhang M L. Magnesium-lithium ultralight alloy, Science Press, China, 2010, pp. 5 (in Chinese).
张密林. 镁锂超轻合金, 科学出版社, 2010, pp. 5.
2 Wang J W, Liu X H, Wang F C, et al. Dual Use Technologies & Products, 2013(6), 21 (in Chinese).
王军武, 刘旭贺, 王飞超, 等. 军民两用技术与产品, 2013(6), 21.
3 Song W J, Dong H P, Liu J, et al. The Chinese Journal of Nonferrous Metals, 2021, 31(1), 1(in Chinese).
宋文杰, 董会萍, 刘洁, 等. 中国有色金属学报, 2021, 31(1), 1.
4 Li X Q, Ren L, Le Q C, et al. Journal of Magnesium and Alloys, 2021, 9(3), 937.
5 Liu Z, Nie J F, Zhao Y H. Transactions of Nonferrous Metals Society of China, 2024, 34(1), 1.
6 Liang X L, Peng X, Ji H, et al. Transactions of Nonferrous Metals Society of China, 2021, 31(4), 925.
7 Tang Y, Jia W T, Liu X, et al. Materials Science and Engineering A, 2016, 675, 55.
8 Ji H, Peng X, Zhang X L, et al. Journal of Alloys and Compounds, 2019, 791, 655.
9 Tang S, Xin T Z, Xu W Q, et al. Nature Communications, 2019, 10(1), 1003.
10 Liu Q Y, Zhou L, Rong X Y, et al. Materials Reports, 2022, 36(10), 150 (in Chinese).
刘沁钰, 周利, 戎校宇, 等. 材料导报, 2022, 36(10), 150.
11 Cai X, Qiao Y X, Xu D K, et al. Materials Reports, 2019, 33(S2), 374 (in Chinese).
蔡祥, 乔岩欣, 许道奎, 等. 材料导报, 2019, 33(S2), 374.
12 Ji D W, Bai M H, Xiao Y, et al. Hot Working Technology, 2020, 49(10), 139 (in Chinese)
纪大伟, 白明华, 肖阳, 等. 热加工工艺, 2020, 49(10), 139.
13 Chen Z H. Deformable magnesium alloy, Chemical Industry Press, Chian, 2005, pp. 353 (in Chinese).
陈振华. 变形镁合金, 化学工业出版社, 2005, pp. 353.
14 Sun Y H, Zhang F, Wang R H, et al. Journal of Alloys and Compounds, 2023, 964, 171.
15 Cao F R, Xia F, Hou H L, et al. Materials Science & Engineering A, 2015, 637(18), 89.
16 An S, Shang D L, Chen M, et al. Materials, 2022, 15(14), 5026.
17 Kumar V, Govind, Shekhar R, et al. Materials Science & Engineering A, 2012, 547, 38.
18 Humphreys F J, Hatherly M. Recrystallization and related annealing phenomena, Elsevier, Netherlands, 2012, pp. 363.
19 Tome C N, Yoo M H, Agnew S R. Acta Materialia, 2001, 49(20), 4277.
20 Steiner M A, Bhattacharyya J J, Agnew S R. Acta Materialia, 2015, 95(0), 443.
21 Perez-Prado M, Ruano O. Scripta Materialia, 2003, 48(1), 59.
22 Chen Z H, Xia W J, Cheng Y Q, et al. The Chinses Journal of Nonferrous Metals, 2005(1), 1(in Chinese).
陈振华, 夏伟军, 程永奇, 等. 中国有色金属学报, 2005(1), 1.
23 Meng L, Liu Z, Chen L. Transactions of Materials and Heat Treatment, 2015, 36(5), 144(in Chinese).
孟利, 刘璋, 陈冷. 材料热处理学报, 2015, 36(5), 144.
[1] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[2] 姚未怡, 卜恒勇. 轧制态7050铝合金双道次热变形微观组织演变[J]. 材料导报, 2025, 39(4): 23120032-8.
[3] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[4] 赵言, 唐建国, 张勇, 郑许, 赵辉. 应变速率对7065铝合金等温压缩软化机制的影响[J]. 材料导报, 2024, 38(8): 22080187-6.
[5] 李娜, 丁西安, 王永强, 陆勤阳, 郑成思. Cu对含Ce高强高效无取向硅钢磁性能的影响[J]. 材料导报, 2024, 38(6): 22100266-7.
[6] 王淼, 刘延辉, 刘昭昭. 镍基高温合金不完全动态再结晶组织对力学性能的影响及断裂机制[J]. 材料导报, 2024, 38(6): 21120034-5.
[7] 张京京, 易幼平, 黄始全, 何海林, 董非, 王当. 2195铝合金中温变形条件下的静态再结晶机理及动力学[J]. 材料导报, 2024, 38(4): 22040369-9.
[8] 段逸飞, 王建利, 袁满, 王礼营, 杨忠, 李菲, 田皓. 镁锂合金中LPSO相的研究进展[J]. 材料导报, 2024, 38(20): 23020055-10.
[9] 孙文明, 李韶林, 宋克兴, 王强松, 丁宗业, 朱莹莹. 铸态Cu-1.16Ni-0.36Cr合金热变形行为及热加工图[J]. 材料导报, 2024, 38(2): 22040205-8.
[10] 吴长军, 朱付成, 王权, 彭浩平, 刘亚, 苏旭平. 600~1 000 ℃退火处理对FCC型CoxFeMnNi3-x合金组织演变及耐蚀性的影响[J]. 材料导报, 2024, 38(18): 23080153-7.
[11] 王同波, 李伯龙, 亓鹏, 王云鹏, 莫永达, 娄花芬. 含铒近α型高温钛合金中α相的动/静态球化机制[J]. 材料导报, 2024, 38(17): 23100083-6.
[12] 马云路, 杨劼人, 刘泽栋, 陈瑞润. TiAl金属间化合物定向技术研究进展[J]. 材料导报, 2024, 38(15): 23100177-12.
[13] 贾建, 罗俊鹏, 张浩鹏, 闫婷, 侯琼, 张义文. W元素在新型镍基粉末高温合金中的强化作用[J]. 材料导报, 2024, 38(15): 23110103-6.
[14] 褚绍阳, 干勇, 仇圣桃, 项利, 田玉石, 石超. 高牌号无取向硅钢生产流程中织构控制研究现状[J]. 材料导报, 2024, 38(13): 23020235-9.
[15] 龙飞, 刘瞿, 朱艺星, 周梦然, 陈高强, 史清宇. 搅拌摩擦加工调控Mg-5Zn-0.6Zr合金耐蚀性的研究[J]. 材料导报, 2024, 38(10): 23020077-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed