Please wait a minute...
材料导报  2025, Vol. 39 Issue (6): 23090180-15    https://doi.org/10.11896/cldb.23090180
  金属与金属基复合材料 |
金纳米星的合成与应用
续丽辉1, 朱兴忠1,2, 徐娟1,2,*, 阚彩侠1,2,*
1 南京航空航天大学物理学院,南京 211106
2 工信部,南京航空航天大学航空航天信息材料与物理重点实验室,南京 211106
Synthesis and Application of Au Nanostars
XU Lihui1, ZHU Xingzhong1,2, Xu Juan1,2,*, KAN Caixia1,2,*
1 College of Physics, Nanjing University of Aeronautics and Astronautics, Nanjing 211106, China
2 Key Laboratory of Aerospace Information Materials and Physics (NUAA), MIIT, Nanjing 211106, China
下载:  全 文 ( PDF ) ( 70118KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着纳米技术的飞速发展,三维复杂结构的金纳米星已成为一种新型纳米材料。金纳米星具有独特的物理化学性质,如可调制的局域表面等离激元光学特性、表面增强拉曼散射效应、光热特性、较大的比表面积等,这些性质使其在纳米材料和生物医学领域具有极高的潜在应用价值。本文首先介绍了近年来国内外金纳米星的合成方法,主要包括种子介导生长法和一步合成法(这两种制备方法均存在各自的优缺点),以及对金纳米星尺寸、枝杈的的调控研究;接着对金纳米星性质中的等离激元特性进行展开描述,并对其理论基础进行解释;本文对目前金纳米星在催化、SERS检测和生物医学领域最新研究进展进行了总结,并展望了金纳米星未来的研究内容和方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
续丽辉
朱兴忠
徐娟
阚彩侠
关键词:  金纳米星  局域表面等离子体共振  表面增强拉曼散射  催化  生物医药    
Abstract: With the rapid development of nanotechnology, Au nanostars with complex three-dimensional structures have become a new type of nanomaterials. Au nanostars have unique physical and chemical properties, such as tunable LSPR optical properties, SERS effect, photothermal properties, and large specific surface area. These properties make them highly potential applications in the fields of nanomaterials and biomedicine. This article first introduces the synthesis methods of Au nanostars at home and abroad in recent years, mainly including seed mediated growth method and one-step synthesis method, both of which have their own advantages and disadvantages, as well as the research on the regulation of the size and branching of Au nanostars. Then, the characteristics of plasmons in the properties of Au nanostars are described, and their theoretical basis is explained. Finally, it summarizes the latest research progress of Au nanostars in the fields of catalysis, SERS detection, and biomedicine, and looks forward to the future research content and direction of Au nanostars.
Key words:  Au NSs    LSPR    SERS    catalysis    biomedical science
出版日期:  2025-03-25      发布日期:  2025-03-24
ZTFLH:  O469  
基金资助: 国家自然科学基金(12374257;11974182;52202099); 南京航空航天大学研究生科研与实践创新(xcxjh20222104)
通讯作者:  *阚彩侠,南京航空航天大学物理学院教授、博士研究生导师。主要围绕宽禁带半导体和贵金属低维纳米结构开展工作,带领团队逐步完成了纳米材料、光电器件相关的制备与表征实验室的搭建和完善工作。
徐娟,南京航空航天大学物理学院博士后。目前主要从事贵金属纳米材料的研究工作。xujuan@nuaa.edu.cn;cxkan@nuaa.edu.cn   
作者简介:  续丽辉,2021年6月、2024年3月分别于济南大学和南京航空航天大学获得理学学士学位和硕士学位。在阚彩侠教授的指导下,目前主要研究领域为贵金属纳米材料。
引用本文:    
续丽辉, 朱兴忠, 徐娟, 阚彩侠. 金纳米星的合成与应用[J]. 材料导报, 2025, 39(6): 23090180-15.
XU Lihui, ZHU Xingzhong, Xu Juan, KAN Caixia. Synthesis and Application of Au Nanostars. Materials Reports, 2025, 39(6): 23090180-15.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23090180  或          https://www.mater-rep.com/CN/Y2025/V39/I6/23090180
1 Lu X X, Bai H P, Yang M G, et al. Materials Reports, 2007, 21(Z3), 138 (in Chinese).
卢旭晓, 白慧萍, 杨光明, 等. 材料导报, 2007, 21(Z3), 138.
2 Nehl C L, Liao H W, Hafner J H. Nano Letters,2006, 6 (4), 683.
3 Wiley B J, Im S H, Li Z Y, et al. The Journal of Physical Chemistry B, 2006, 110(32), 15666.
4 Kottmann J P, Martin O J F, Smith D R, et al. Physical Review B,2001, 64(23), 235402.
5 Jensen T, Kelly L, Lazarides A, et al. Journal of Cluster Science,1999, 10, 295.
6 Campbell C T, Parker S C, Starr D E. Science,2002, 298(5594), 811.
7 Haruta M. Catalysis Today,1997, 36(1), 153.
8 Moskovits M, Jeong D H. Chemical Physics Letters, 2004, 397(1-3), 91.
9 Zhang M, Chen D K, Ren Y W, et al. Chinese Journal of Applied Che-mistry, 2021, 38(7), 866 (in Chinese).
张萌, 陈东圳, 任研伟, 等. 应用化学, 2021, 38(7), 866.
10 de Aberasturi D J, Serrano-Montes A B, Liz-Marzán L M. Advanced Optical Materials, 2015, 3(5), 602.
11 Pang B, Zhao Y, Luehmann H, et al. ACS Nano, 2016, 10(3), 3121.
12 Rayalu S S, Jose D, Mangrulkar P A, et al. International Journal of Hydrogen Energy,2014, 39(8), 3617.
13 Zhou Y, Liu S N, Cai L H, et al. Chinese Journal of Applied Chemistry, 2021, 38(2), 181. (in Chinese)
周莹, 刘赛男, 蔡砺寒, 等. 应用化学, 2021, 38(2), 181.
14 Kumar A, Kim S, Nam J M. Journal of the American Chemical Society, 2016, 138(44), 14509.
15 Iqbal M, Kaneti Y V, Kim J, et al. Small, 2019, 15(6), 1804378.
16 Chen Y, Fan Z, Zhang Z, et al. Chemical Reviews, 2018, 118(13), 6409.
17 Chen A, Ostrom C. Chemical Reviews,2015, 115(21), 11999.
18 Pareek V, Bhargava A, Gupta R, et al. Advanced Science, Engineering and Medicine,2017, 9(7), 527.
19 Sau T K, Rogach A L, Jáckel F, et al. Advanced Materials,2010, 22(16), 1805.
20 LaMer V K, Dinegar R H. Journal of the American Chemical Society, 1950, 72(11), 4847.
21 Chandra K, Culver K S B, Werner S E, et al. Chemistry of Materials,2016, 28(18), 6763.
22 Khoury C G, Vo-Dinh T. The Journal of Physical Chemistry C, 2008, 112(48), 18849.
23 Atta S, Beetz M, Fabris L. Nanoscale,2019, 11(6), 2946.
24 Chatterjee H, Rahman D S, Sengupta M, et al. The Journal of Physical Chemistry C,2018, 122(24), 13082.
25 Umadevi S, Lee H C, Ganesh V, et al. Liquid Crystals, 2014, 41(3), 265.
26 Liebig F, Henning R, Sarhan R M, et al. RSC Advances,2019, 9(41), 23633.
27 Chatterjee S, Ringane A B, Arya A, et al. Journal of Nanoparticle Research, 2016, 18, 1.
28 Zeng L, Pan Y, Wang S, et al. ACS Applied Materials & Interfaces,2015, 7(30), 16781.
29 Fales A M, Yuan H, Vo-Dinh T. The Journal of Physical Chemistry C,2014, 118(7), 3708.
30 He R, Wang Y C, Wang X, et al. Nature Communications, 2014, 5(1), 4327.
31 Bazán-Díaz L, Mendoza-Cruz R, Velázquez-Salazar J J, et al. Nanoscale,2015, 7(48), 20734.
32 Ngo N M, Omidiyan M, Tran H V, et al. ACS Applied Nano Materials,2022, 5(8), 11391.
33 Xie J, Lee J Y, Wang D I C. Chemistry of Materials,2007, 19(11), 2823.
34 Minati L, Benetti F, Chiappini A, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2014, 441, 623.
35 Khan Z, Singh T, Hussain J I, et al. Colloids and Surfaces B:Biointerfaces,2013, 104, 11.
36 Verma J, A Van Veen H, Lal S, et al. Current Nanoscience,2014, 10(5), 660.
37 Kumar P S, Pastoriza-Santos I, Rodríguez-González B, et al. Nanotech-nology,2007, 19(1), 015606.
38 Nalbant Esenturk E, Hight Walker A R. Journal of Raman Spectroscopy,2009, 40(1), 86.
39 Demille T B, Hughes R A, Dominique N, et al. Nanoscale,2020, 12(31), 16489.
40 Indrasekara A S D S, Meyers S, Shubeita S, et al. Nanoscale, 2014, 6(15), 8891.
41 Wang Y, Serrano A B, Sentosun K, et al. Small, 2015, 11(34), 4314.
42 Kedia A, Kumar P S. Journal of Materials Chemistry C, 2013, 1(30), 4540.
43 Yuan H, Fales A M, Khoury C G, et al. Journal of Raman Spectroscopy,2013, 44(2), 234.
44 Trigari S, Rindi A, Margheri G, et al. Journal of Materials Chemistry,2011, 21(18), 6531.
45 Pu Y, Zhao Y, Zheng P, et al. Inorganic Chemistry, 2018, 57(14), 8599.
46 Li J, Wu J, Zhang X, et al. The Journal of Physical Chemistry C,2011, 115(9), 3630.
47 Jauffred L, Samadi A, Klingberg H, et al. Chemical Reviews,2019, 119(13), 8087.
48 Fang Z, Zhu X. Advanced Materials, 2013, 25(28), 3840.
49 Jørgensen J T, Norregaard K, Tian P, et al. Scientific Reports, 2016, 6(1), 30076.
50 Kyriazi M E, Giust D, El-Sagheer A H, et al. ACS Nano, 2018, 12(4), 3333.
51 Li Z, Wang Z, Khan J, et al. ACS Sensors, 2020, 5(9), 2783.
52 Mantri Y, Jokerst J V. ACS Nano,2020, 14(8), 9408.
53 Gellé A, Price G D, Voisard F, et al. ACS Applied Materials & Interfaces,2021, 13(30), 35606.
54 Wang S S, Jiao L, Qian Y, et al. Angewandte Chemie, 2019, 131(31), 10823.
55 Brady B, Steenhof V, Nickel B, et al. ACS Applied Energy Materials,2019, 2(3), 2255.
56 Wang C, Zhao X P, Xu Q Y, et al. ACS Applied Nano Materials,2018, 1(10), 5805.
57 Arroyo-Currás N, Scida K, Ploense K L, et al. Analytical Chemistry,2017, 89(22), 12185.
58 Auyeung E, Morris W, Mondloch J E, et al. Journal of the American Chemical Society, 2015, 137(4), 1658.
59 Zhuang C, Xu Y, Xu N, et al. Sensors, 2018, 18(10), 3458.
60 Nagy B J, Pápa Z, Péter L, et al. Plasmonics, 2020, 15, 335.
61 Gutiérrez Y, Alcaraz de la Osa R, Ortiz D, et al. Applied Sciences, 2018, 8(1), 64.
62 Ning S, Zhang N, Dong H, et al. Optical Materials Express, 2018, 8(10), 3014.
63 Gao Y, Wang J, Wang W, et al. Analytical Chemistry, 2021, 93(4), 2480.
64 Marinica D C, Kazansky A K, Nordlander P, et al. Nano Letters, 2012, 12(3), 1333.
65 Wan W, Yin J, Wu Y, et al. ACS Applied Materials & Interfaces,2019, 11(21), 19631.
66 Sivis M, Pazos-Perez N, Yu R, et al. Communications Physics, 2018, 1(1), 13.
67 Jiang M, Xie H, Zhu J, et al. Sensors and Actuators B:Chemical,2019, 297, 126742.
68 Kannan P, Tiong H Y, Kim D H. Bioelectron, 2012, 31(1), 32.
69 Mieszawska A J, Mulder W J M, Fayad Z A, et al. Molecular Pharmaceutics,2013, 10(3), 831.
70 Zhang L, Chen Q, Ma Y, et al. ACS Applied Bio Materials,2019, 3(1), 107.
71 Kumar U S, Afjei R, Ferrara K, et al. ACS Nano,2021, 15(11), 17582.
72 Cai Z, Zhang Y, He Z, et al. ACS Applied Bio Materials,2020, 3(8), 5322.
73 Miao D, Yu Y, Chen Y, et al. Molecular Pharmaceutics,2020, 17(4), 1127.
74 Wu R, Min Q, Guo J, et al. Analytical Chemistry, 2019, 91(7), 4608.
75 Xu P, Feng Q, Yang X, et al. Bioconjugate Chemistry, 2018, 29(8), 2855.
76 Lee H, Dam D H M, Ha J W, et al. ACS Nano,2015, 9(10), 9859.
77 Sousa-Castillo A, Comesaña-Hermo M, Rodríguez-González B, et al. The Journal of Physical Chemistry C, 2016, 120(21), 11690.
78 Liu B, Jiang Y, Wang Y, et al. Catalysis Science & Technology,2018, 8(4), 1094.
79 Kaur G, Tanwar S, Kaur V, et al. Journal of Materials Chemistry C,2021, 9(42), 15284.
80 Li Y, Geng X, Leng W, et al. New Journal of Chemistry, 2017, 41(17), 9406.
81 Li A, Chen Y, Duan W, et al. RSC Advances,2017, 7(32), 19694.
82 Wang L, Wang Y, Schmuki P, et al. Electrochimica Acta,2018, 260, 212.
83 Wang S S, Hu W C, Liu F F, et al. Electrochimica Acta,2019, 301, 359.
84 Kumar A, Choudhary P, Kumar K, et al. Materials Chemistry Frontiers, 2021, 5(3), 1448.
85 Sánchez-Iglesias A, Barroso J, Solís D M, et al. Journal of Materials Chemistry A, 2016, 4(18), 7045.
86 Li Y, Ma J, Ma Z. Electrochimica Acta,2013, 108, 435.
87 Lee C, Lawrie B, Pooser R, et al. Chemical Reviews, 2021, 121(8), 4743.
88 Tang L, Li J. ACS Sensors,2017, 2(7), 857.
89 Kim S, Lee H J. Analytical Chemistry,2017, 89(12), 6624.
90 Jana D, Matti C, He J, et al. Analytical Chemistry, 2015, 87(7), 3964.
91 Bhamidipati M, Cho H Y, Lee K B, et al. Bioconjugate Chemistry, 2018, 29(9), 2970.
92 Wong Y L, Kang W C M, Reyes M, et al. ACS Infectious Diseases, 2020, 6(5), 947.
93 Reyes M, Piotrowski M, Ang S K, et al. Analytical Chemistry, 2017, 89(10), 5373.
94 Liu Y, Pan M, Wang W, et al. Analytical Chemistry,2018, 91(3), 2086.
95 He S, Kyaw Y M E, Tan E K M, et al. Analytical Chemistry, 2018, 90(10), 6071.
96 Srivastav S, Dankov A, Adanalic M, et al. Analytical Chemistry, 2021, 93(36), 12391.
97 Tran H V, Ngo N M, Medhi R, et al. Materials,2022, 15(2), 503.
98 Jia X, Xu W, Ye Z, et al. Small, 2020, 16(39), 2003707.
99 Yan R, Chen J, Wang J, et al. Small,2018, 14(50), 1802745.
100 Wang J, Zhou Z, Zhang F, et al. Colloids and Surfaces B:Biointerfaces, 2018, 170, 303.
101 Barbosa S, Topete A, Alatorre-Meda M, et al. The Journal of Physical Chemistry C, 2014, 118(45), 26313.
102 Li B, Zhou Q, Wang H, et al. Chemical Engineering Journal, 2021, 403, 126364.
103 Pramanik A, Gao Y, Patibandla S, et al. The Journal of Physical Chemistry Letters,2021, 12(8), 2166.
104 Sasidharan S, Bahadur D, Srivastava R. ACS Sustainable Chemistry & Engineering,2017, 5(11), 10163.
105 Zhi X, Liu Y, Lin L, et al. Nanomedicine:Nanotechnology, Biology and Medicine,2019, 20, 102019.
106 Yuan H, Liu Y, Fales A M, et al. Analytical chemistry,2013, 85(1), 208.
107 Nguyen M D, Tran H V, Xu S, et al. Applied Sciences,2021, 11(23), 11301.
[1] 张怿炜, 胡仁宗, 欧阳柳章, 刘军, 杨黎春, 朱敏. MoC纳米晶/掺氮多孔碳的结构调控及在锂硫电池中的性能优化[J]. 材料导报, 2025, 39(6): 24050008-6.
[2] 唐晓龙, 温佳俊, 刘媛媛, 王成志, 罗宁, 段二红, 周远松, 易红宏, 高凤雨. CoMn2O4/Ce-TiO2双功能催化剂SCR脱硝协同CO氧化性能研究[J]. 材料导报, 2025, 39(5): 24020126-7.
[3] 吴国栋, 张文, 伏鑫, 刘辉强, 汪建, 王兵, 熊鹰. 锰气相催化多晶金刚石表面原位石墨烯构筑研究[J]. 材料导报, 2025, 39(5): 24010176-4.
[4] 李兆周, 张孝冲, 韦玉花, 郭津瑞, 赵明辉, 王耀, 万宁波, 古绍彬, 康怀彬, 罗磊. 人工模拟酶的构建策略、分类及应用[J]. 材料导报, 2025, 39(5): 24010256-13.
[5] 杨明, 孙杰, 王金泽, 崔占朋, 吴敏, 杜伟. 金属有机框架及碳基材料在室内有机污染物控制中的研究进展[J]. 材料导报, 2025, 39(4): 24010153-8.
[6] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[7] 孔德茹, 刘靖, 杨晓林, 孙冬兰, 张进康. 溶胶-凝胶-燃烧法中双功能络合剂对掺铝氧化锌性能影响的研究[J]. 材料导报, 2025, 39(1): 23100131-7.
[8] 李歌, 马子然, 闾菲, 彭胜攀, 佟振伟. 基于机器学习高通量筛选二氧化碳还原电催化剂的研究进展[J]. 材料导报, 2025, 39(1): 23110048-13.
[9] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[10] 孙亚洲, 徐沙, 邹金含, 吴智华, 谢顺吉. 二氧化碳电催化还原酸性体系研究进展[J]. 材料导报, 2024, 38(8): 23040216-6.
[11] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[12] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[13] 陈美玲, 孙艳芝, 吴玉锋, 袁浩然, 潘军青. 废轮胎裂解炭黑在能源存储及转换中的应用进展[J]. 材料导报, 2024, 38(8): 23100011-11.
[14] 尹燕, 尹硕尧, 陈斌, 冯英杰, 张俊锋. 高性能Ir基阳极双催化层阴离子交换膜电解水[J]. 材料导报, 2024, 38(6): 23040182-7.
[15] 王海涛, 施宝旭, 赵晓旭, 常娜. 高效降解盐酸四环素的CdS/BiOCl复合光催化剂的制备及性能[J]. 材料导报, 2024, 38(6): 22060180-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed