Please wait a minute...
材料导报  2025, Vol. 39 Issue (5): 24010256-13    https://doi.org/10.11896/cldb.24010256
  高分子与聚合物基复合材料 |
人工模拟酶的构建策略、分类及应用
李兆周1,2,†, 张孝冲1,2,†, 韦玉花1,2, 郭津瑞1,2, 赵明辉1,2, 王耀1,2,*, 万宁波1,2, 古绍彬1,2, 康怀彬1,2, 罗磊1,2
1 河南科技大学食品与生物工程学院,河南 洛阳 471000
2 河南省食品绿色加工与质量安全控制国际联合实验室,河南 洛阳 471000
Construction Strategies,Classifications and Applications of Artificial Enzyme Mimics
LI Zhaozhou1,2,†, ZHANG Xiaochong1,2,†, WEI Yuhua1,2, GUO Jinrui1,2, ZHAO Minghui1,2, WANG Yao1,2,*, WAN Ningbo1,2, GU Shaobin1,2, KANG Huaibin1,2, LUO Lei1,2
1 College of Food and Bioengineering, Henan University of Science and Technology, Luoyang 471000, Henan, China
2 Henan International Joint Laboratory of Food Green Processing and Quality Safety Control, Luoyang 471000, Henan, China
下载:  全 文 ( PDF ) ( 25630KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 人工模拟酶与天然酶具有相似的催化活性,兼有可调节性、稳定性、再生性和易于大规模制备等优点,在催化、分析检测、药物生产和能源开发等领域具有广阔的应用前景。本文根据天然酶结构、催化机制以及现有模拟酶的特点,阐述了模拟酶构建的基本策略,包括底物结合位点的构建以及催化基团的引入,分析了不同构建策略的特点,论述了相关的技术途径。根据模拟酶载体的不同,分别介绍了多肽模拟酶、纳米材料模拟酶和超分子模拟酶,并对各类模拟酶的催化机制和未来发展趋势进行了分析和展望,简述了它们在痕量物质分析、生物医学以及环境保护等方面的应用。本文为模拟酶的研制提供了理论参考,也为模拟酶的推广应用提供了技术支撑。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李兆周
张孝冲
韦玉花
郭津瑞
赵明辉
王耀
万宁波
古绍彬
康怀彬
罗磊
关键词:  模拟酶  构建策略  催化机制    
Abstract: Artificial enzyme mimics possess similar catalytic activities to natural enzymes and advantages of tunability, stability, reproducibility, and ease of large-scale production. They have broad application prospects in the fields of catalysis, sensing detection, drug production and energy exploitation. Based on the structures and catalytic mechanisms of natural enzymes and the characteristics of existing enzyme mimics, this paper expounds the basic strategies for the construction of enzyme mimics, including the construction of substrate binding sites and the introduction of ca-talytic groups. The characteristics of different construction strategies are investigated, and the related technical approaches are discussed. According to the different carriers of enzyme mimics, polypeptide enzyme mimics, nanomaterial enzyme mimics, and supramolecular enzyme mi-mics are introduced. Furthermore, the catalytic mechanisms and future development trends of various enzyme mimics are proposed and prospected, and their applications in trace matter analysis, biomedicine and environmental protection are also briefly summarized. The related contents provide theoretical references for the development of enzyme mimics and technical supports for their widespread applications.
Key words:  enzyme mimics    construction strategy    catalyst mechanism
出版日期:  2025-03-10      发布日期:  2025-03-18
ZTFLH:  O643.3  
基金资助: 洛阳市公益性行业科研专项(2202021A);河南省科技攻关计划(242102411001);河南省优秀青年科学基金(202300410121);国家自然科学基金(31701694;U1504330;31702218);河南省青年人才托举工程项目(2020HYTP029);河南省研究生教育改革与质量提升工程项目(HNYJS2020JD06)
通讯作者:  *王耀,博士,河南科技大学食品与生物工程学院副教授、硕士研究生导师,主要从事人工模拟酶及其应用研究。tiger861215@163.com   
作者简介:  李兆周,博士,河南科技大学食品与生物工程学院教授、硕士研究生导师,主要从事人工模拟酶及其应用研究。
张孝冲,河南科技大学硕士研究生,研究方向为分子印迹模拟酶及其应用。共同第一作者
引用本文:    
李兆周, 张孝冲, 韦玉花, 郭津瑞, 赵明辉, 王耀, 万宁波, 古绍彬, 康怀彬, 罗磊. 人工模拟酶的构建策略、分类及应用[J]. 材料导报, 2025, 39(5): 24010256-13.
LI Zhaozhou, ZHANG Xiaochong, WEI Yuhua, GUO Jinrui, ZHAO Minghui, WANG Yao, WAN Ningbo, GU Shaobin, KANG Huaibin, LUO Lei. Construction Strategies,Classifications and Applications of Artificial Enzyme Mimics. Materials Reports, 2025, 39(5): 24010256-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24010256  或          https://www.mater-rep.com/CN/Y2025/V39/I5/24010256
1 Wang Q, Wei H, Zhang Z, et al. TrAC Trends in Analytical Chemistry, 2018, 105, 218.
2 Huang W, Huang S, Chen G, et al. Chembiochem, 2022, 23(10), e202100567.
3 Wang J, Yan H, Li J, et al. Progress in Chemistry, 2018, 30(8), 1121.
4 Shafaat H S, Manesis A C, Yerbulekova A. Accounts of Chemical Research, 2023, 56(9), 984.
5 Yeganegi A, Fardindoost S, Tasnim N, et al. Talanta, 2024, 267, 125271.
6 Zhang Y, Song Z M, Du Y. Chinese Journal of Analytical Chemistry, 2023, 51(5), 800.
7 Wei X Y. Artificial enzyme mimics and bionic catalysis technology, University of Electronic Science and Technology of China Press, 2016, pp.72 (in Chinese).
魏星跃. 人工酶模拟与仿生催化技术, 电子科技大学出版社, 2016, pp.72.
8 Chen D, Li Y, Li X, et al. Arabian Journal of Chemistry, 2022, 15(2), 103611.
9 Liu Y, Wang Z G. ACS Nano, 2023, 17(14), 13000.
10 Biniuri Y, Albada B, Wolff M, et al. ACS Catalysis, 2018, 8(3), 1802.
11 Tian R, Li Y, Xu J, et al. Journal of Materials Chemistry B, 2022, 10(35), 6590.
12 Orbay S, Kocaturk O, Sanyal R, et al. Micromachines, 2022, 13(9), 1464.
13 Zhang Z, Zhang X, Liu B, et al. Journal of the American Chemical Society, 2017, 139(15), 5412.
14 Zhou Q, Xu Z, Liu Z. Biosensors, 2022, 12(8), 576.
15 Rameshbabu R, Pecchi G, Delgado E J, et al. Journal of Photochemistry and Photobiology A:Chemistry, 2021, 411, 113211.
16 Ding J, Wang F, Pan F, et al. ACS Catalysis, 2021, 11(21), 13721.
17 Liu Y, Xia Y, Tang Y, et al. Analytica Chimica Acta, 2022, 1227, 340301.
18 Kamel S, Khattab T A. Cellulose, 2021, 28(8), 4545.
19 Ho T T T, Chi-Hien D, Huynh T K C, et al. Carbohydrate Polymers, 2021, 251, 116998.
20 Pan M M, Li P, Yu Y P, et al. Advanced Healthcare Materials, 2023, 12(26), 2300821.
21 Chen Y, He Y, Xu H, et al. Nano Today, 2022, 43, 101421.
22 Li X W, Zangiabadi M, Zhao Y. Journal of the American Chemical Society, 2021, 143(13), 5172.
23 Chen J, Zheng X, Zhang J, et al. National Science Review, 2022, 9(3), 186.
24 Qiu X C, Fan C X, Bai R, et al. Chinese Science Bulletin, 2024, 69(Z1), 553 (in Chinese).
邱星晨, 范存霞, 白瑞, 等. 科学通报, 2024, 69(Z1), 553.
25 He J, Zhang L, Xu L, et al. Advances in Polymer Technology, 2020, 2020, 1.
26 Xu X, Wang J, Huang R, et al. Catalysis Science & Technology, 2021, 11(10), 3402.
27 Makam P, Yamijala S S R K C, Bhadram V S, et al. Nature Communications, 2022, 13(1), 1505.
28 Li T T, Yue C F, Huo Y Q, et al. Chemical Journal of Chinese Universities, 2024, 45(1), 32 (in Chinese).
李婷婷, 岳彩凤, 霍媛青, 等. 高等学校化学学报, 2024, 45(1), 32.
29 Wang Y, Yang L, Wang M, et al. ACS Catalysis, 2021, 11(9), 5839.
30 Díaz-Caballero M, Navarro S, Nuez-Martínez M, et al. ACS Catalysis, 2020, 11(2), 595.
31 Liu Q, Wan K W, Shang Y X, et al. Nature Materials, 2021, 20(3), 395.
32 Jian T, Zhou Y, Wang P, et al. Nature Communications, 2022, 13(1), 3025.
33 Liu Q, Kuzuya A, Wang Z G. IScience, 2023, 26(1), 105831.
34 Gao L, Zhuang J, Nie L, et al. Nature Nanotechnology, 2007, 2(9), 577.
35 Elsayed M H, Jayakumar J, Abdellah M, et al. Applied Catalysis B:Environmental, 2021, 283, 119659.
36 Bazin D, Vekeman J, Wang Q, et al. Comptes Rendus Chimie, 2022, 25, 237.
37 Gao L Z, Chen L, Zhang R F, et al. Scientia Sinica Chimica, 2022, 52(9), 1649 (in Chinese).
高利增, 陈雷, 张若飞, 等. 中国科学:化学, 2022, 52(9), 1649.
38 Kang S, Lee K, Ryu J H, et al. ACS Applied Nano Materials, 2023, 6(6), 4319.
39 Gao Y, Ding J. Advanced Materials Technologies, 2023, 8(2), 2200263.
40 Dhiman N, Ghosh S, Mishra Y K, et al. Materials Advances, 2022, 3(7), 3101.
41 Tang Y, Chen Y, Liu Y, et al. Analytical Chemistry, 2022, 94(51), 17787.
42 Xu Z, Sun P, Zhang J, et al. Chemical Engineering Journal, 2020, 399, 125797.
43 Zeng G, Duan M, Xu Y, et al. Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy, 2020, 241, 118649.
44 Zhu D, Zhang M, Pu L, et al. Small, 2022, 18(3), 2104993.
45 Gao W, He J, Chen L, et al. Nature Communications, 2023, 14(1), 160.
46 Zhao J, Gong J, Wei J, et al. Journal of Colloid and Interface Science, 2022, 618, 11.
47 Jain S, Sharma B, Thakur N, et al. ACS Applied Nano Materials, 2020, 3(8), 7917.
48 Chen Y, Wang P, Hao H, et al. Journal of the American Chemical Society, 2021, 143(44), 18643.
49 Fan H Z, Zheng J J, Xie J Y, et al. Advanced Materials, 2024, 36(10), 2300387.
50 Jin G, Liu J, Wang C, et al. Applied Catalysis B:Environmental, 2020, 267, 118725.
51 Mansur A A P, Leonel A G, Krambrock K, et al. Catalysis Today, 2022, 397, 129.
52 Deshmukh A R, Aloui H, Kim B S. Chemical Engineering Journal, 2021, 421, 127859.
53 Wang Z Z, Wu J X, Zheng J J, et al. Nature Communications, 2021, 12(1), 6866.
54 Dong J, Han X, Liu Y, et al. Angewandte Chemie-International Edition, 2020, 59(33), 13722.
55 Han W K, Liu Y, Yan X, et al. Materials Chemistry Frontiers, 2023, 7(15), 2995.
56 Fan C X, Gu Y, Qiu X C, et al. Materials Reports, 2023, 37(2), 22030004 (in Chinese).
范存霞, 谷雨, 邱星晨, 等. 材料导报, 2023, 37(2), 22030004.
57 Li Y, Bai X, Yuan D, et al. Nature Communications, 2023, 14(1), 3171.
58 Li J N, Liu T T, Dahlgren R A, et al. Analytica Chimica Acta, 2022, 1204, 339703.
59 Ma R L, He Q, Liang M J, et al. Chinese Journal of Analytical Chemistry, 2022, 50(4), 545 (in Chinese).
马如龙, 郝茜, 梁梦佳, 等. 分析化学, 2022, 50(4), 545.
60 Xue Y, Ji Y, Wang X, et al. Green Energy & Environment, 2023, 8(3), 864.
61 Lu Z W, Dang Y, Dai C L, et al. Journal of Hazardous Materials, 2021, 403, 123979.
62 Feng Y Y, Qin J, Zhou Y, et al. Journal of Colloid and Interface Science, 2022, 606, 826.
63 Luo Q, Li Y, Huo X, et al. Small, 2022, 18(16), 2107401.
64 Zhang S F, Li Y H, Sun S, et al. Nature Communications, 2022, 13(1), 4744.
65 Chen Y, Jiao L, Yan H, et al. Analytical Chemistry, 2020, 92(19), 13518.
66 Tripathi K M, Ahn H T, Chung M, et al. ACS Biomaterials Science & Engineering, 2020, 6(10), 5527.
67 Xiao F, Xia Q, Zhang S, et al. Journal of Hazardous Materials, 2024, 465, 133126.
68 Muhammad P, Hanif S, Li J Y, et al. Nano Today, 2022, 45, 101530.
69 Dong C, Wang S, Ma M, et al. Applied Materials Today, 2021, 25, 101178.
70 Yeniterzi D, Demirsoy Z, Saylam A, et al. Macromolecular Bioscience, 2022, 22(9), 2200079.
71 Wang B, Zhang X D, Kang G, et al. Chinese Journal of Analytical Chemistry, 2022, 50(1), 54 (in Chinese).
王波, 张续东, 康革, 等. 分析化学, 2022, 50(1), 54.
72 Zhang J, Bai Q, Bi X, et al. Nano Today, 2022, 431, 01429.
73 Zhang Y, Yang S, Wang J, et al. Talanta, 2021, 233, 122594.
74 Zhu D, Zhang M, Wang C, et al. Chemistry of Materials, 2022, 34(24), 11072.
75 Pan Y, Wang X, Lin H, et al. Nanoscale, 2023, 15(34), 14068.
76 Chen Q, Zhang X, Li S, et al. Chemical Engineering Journal, 2020, 395, 125130.
77 He S, Yang L, Balasubramanian P, et al. Journal of Materials Chemistry A, 2020, 8(47), 25226.
78 Wu Z J, Xie L K, Wang J H, et al. Chemical Industry and Engineering Progress, 2023, 42(1), 497 (in Chinese).
吴中杰, 谢连科, 王晶辉, 等. 化工进展, 2023, 42(1), 497.
79 Zhang C X, Gao Y C, Li H W, et al. ACS Applied Nano Materials, 2020, 3(9), 9318.
80 Gharib M, Kornowski A, Noei H, et al. ACS Materials Letters, 2019, 1(3), 310.
81 Li C, Wang Y, Chen Y, et al. Materials Today Sustainability, 2023, 241, 00537.
82 Wang J, Tao H, Lu T, et al. Journal of Colloid and Interface Science, 2021, 584114.
83 Wei D, Zhang X, Chen B, et al. Analytica Chimica Acta, 2020, 1126106.
84 Zhao H, Zeng L H, Xu X L. Chinese Journal of Low Temperature Physics, 2020, 42(3), 152 (in Chinese).
赵赫, 曾令辉, 许小亮. 低温物理学报, 2020, 42(3), 152.
85 Wang C, Zhang M, Bai L, et al. Analytical Chemistry, 2023, 95(17), 7014.
86 Yang W, Li J, Wang M, et al. Colloids and Surfaces B:Biointerfaces, 2020, 188, 110742.
87 He S B, Yang L, Lin X L, et al. Talanta, 2020, 211, 120707.
88 Wang D, Gong C, Zhao H. Microchemical Journal, 2022, 181, 107706.
89 Yang H, He Q, Pan J, et al. Sensors and Actuators B:Chemical, 2022, 351, 130905.
90 Xiao Z, Qu K, Ye F, et al. Science China Materials, 2023, 66(9), 3592.
91 Wulff G, Sarhan A. Angewandte Chemie-International Edition, 1972, 11,341.
92 Vlatakis G, Andersson L I, Müller R, et al. Nature, 1993, 361(6413), 645.
93 Jin J Y, Li Z Z, Chen X J, et al. Chemical Reagents, 2022, 44(11), 1558 (in Chinese).
金久煜, 李兆周, 陈秀金, 等. 化学试剂, 2022, 44(11), 1558.
94 Gong B C, Hu Q H, Su A X, et al. Food Science, 2021, 42(12), 281 (in Chinese).
巩碧钏, 胡秋辉, 苏安祥, 等. 食品科学, 2021, 42(12), 281.
95 He X, Luo Q, Guo Z, et al. Journal of Materials Chemistry B, 2022, 10(35), 6716.
96 Guo Z, Luo Q, Liu Z. Chemistry-a European Journal, 2022, 28(61), e202202052.
97 Chen Z, Liu X, Huang C, et al. ACS Applied Materials & Interfaces, 2020, 12(5), 6615.
98 Peng J, Deng F, Shi H, et al. Applied Catalysis B-Environmental, 2024, 340, 123179.
99 Khosropour H, Keramat M, Laiwattanapaisal W. Biosensors & Bioelectronics, 2024, 243, 115754.
100 Wu D, Baaziz W, Gu B, et al. Nature Catalysis, 2021, 4(7), 595.
101 He D C, Li T, Dai X C, et al. Journal of the American Chemical Society, 2023, 145(38), 20813.
102 Ostovan A, Arabi M, Wang Y, et al. Advanced Materials, 2022, 34(42), 2203154.
103 Arabi M, Ostovan A, Li J, et al. Advanced Materials, 2021, 33(30), 2100543.
104 Zangiabadi M, Zhao Y. Journal of the American Chemical Society, 2022, 144(37), 17110.
105 Tang M, Wan J Q, Wang Y, et al. Applied Catalysis B-Environmental, 2023, 334, 122852.
106 Shen H M, Ji H B, Wu H K, et al. Chinese Journal of Organic Chemistry, 2014, 34(8), 1549 (in Chinese).
沈海民, 纪红兵, 武宏科, 等. 有机化学, 2014, 34(8), 1549.
107 Paul S, Das S, Mitra B, et al. RSC Advances, 2023, 13(8), 5457.
108 Lu W, Zhang J, Li N, et al. Sensors and Actuators B:Chemical, 2020, 303, 127106.
109 Li F, Hu Y, Zhao A, et al. Microchimica Acta, 2020, 187, 1.
110 Jiang W J, He R, Lv H, et al. ACS Sensors, 2023, 8(11), 4264.
111 Tu X, Gao F, Ma X, et al. Journal of Hazardous Materials, 2020, 396, 122776.
112 Czescik J, Lyu Y C, Neuberg S, et al. Journal of the American Chemical Society, 2020, 142(15), 6837.
113 Yadav R, Chundawat T S, Surolia P K, et al. Journal of Physics and Chemistry of Solids, 2022, 165, 110691.
114 Liu Q, Wang J, Duan C, et al. Journal of Hazardous Materials, 2022, 426, 128074.
115 Cheng N, Chen Y, Wu X, et al. Chemical Communications (Cambridge, United Kingdom), 2018, 54(49), 6284.
116 Narkhede N, Uttam B, Rao C P. Inorganica Chimica Acta, 2018, 483, 337.
117 Lisi D, Vezzoni C A, Casnati A, et al. Chemistry (Weinheim an der Bergstrasse, Germany), 2023, 29(12), e202203213.
118 Li N, Lin J M, Li R H, et al. Journal of the American Chemical Society, 2023, 145(29), 16098.
119 Shi J W, Sun S N, Liu J, et al. ACS Catalysis, 2022, 12(22), 14436.
120 Santoro O, Redshaw C. Coordination Chemistry Reviews, 2021, 448, 214173.
121 Zhu Z K, Zhang J, Cong Y C, et al. Angewandte Chemie-International Edition, 2022, 61(7), e202113381.
122 Yu X F, Wang G R, Xu G, et al. Chemical Engineering & Equipment, 2020(1), 216 (in Chinese).
于晓锋, 王光荣, 徐刚, 等. 化学工程与装备, 2020(1), 216.
123 Xu K Q, Li J H, Liu F M, et al. Angewandte Chemie-International Edition, 2023, 62(50), e202311968.
124 Han D D, Sun L H, Li Z Q, et al. Energy Storage Materials, 2024, 65, 103143.
125 Tang J, Chen C, Hong T, et al. Organic Letters, 2022, 24(43), 7955.
126 Kondo M, Nakamura K, Krishnan C G, et al. ACS Catalysis, 2021, 11(3), 1863.
127 Ono K, Niibe M, Iwasawa N. Chemical Science, 2019, 10(32), 7627.
128 Xia Y, Song Z, Tan Z, et al. Nature Communications, 2021, 12(1), 732.
129 Martinez-Cuezva A, Marin-Luna M, Alonso D A, et al. Organic Letters, 2019, 21(13), 5192.
130 Heard A W, Goldup S M. Chem, 2020, 6(4), 994.
131 Perez J D, Puigcerver J, Orlando T, et al. Organic Chemistry Frontiers, 2021, 8(15), 4202.
132 Tang Y P, Luo Y E, Xiang J F, et al. Angewandte Chemie International Edition, 2022, 61(15), e202200638.
133 Ruan X, Yang Y, Liu W, et al. ACS Central Science, 2021, 7(10), 1698.
134 Li J, Huang D, Fang Q, et al. Chinese Science Bulletin-Chinese, 2022, 67(20), 2383.
135 Martinez-Cuezva A, Saura-Sanmartin A, Alajarin M, et al. ACS Catalysis, 2020, 10(14), 7719.
136 Feehan R, Franklin M W, Slusky J S G. Nature Communications, 2021, 12(1), 3712.
137 Wei Y H, Wu J, Wu Y X, et al. Advanced Materials, 2022, 34(27), 2201736.
[1] 董小平, 张昭卿, 杨丽颖, 忻胜海, 李健. 多组元化合物掺杂改善MgH2释放氢的催化作用与催化机制研究进展[J]. 材料导报, 2023, 37(17): 21100007-8.
[2] 戈明亮, 李越颖, 梁国栋. 纳米酶在传感检测中的应用研究进展[J]. 材料导报, 2021, 35(19): 19195-19203.
[3] 李晓楠, 李景华, 杨宪园, 胡燕, 蔡开勇. 中空Fe3O4-PB复合纳米粒类Fenton催化降解苯酚[J]. 材料导报, 2020, 34(13): 13017-13021.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed