Please wait a minute...
材料导报  2023, Vol. 37 Issue (17): 21100007-8    https://doi.org/10.11896/cldb.21100007
  无机非金属及其复合材料 |
多组元化合物掺杂改善MgH2释放氢的催化作用与催化机制研究进展
董小平1,2,3,*, 张昭卿1,2,3, 杨丽颖1, 忻胜海1,2,3, 李健1,2
1 河北大学质量技术监督学院,河北 保定 071002
2 河北省新能源汽车动力系统轻量化技术创新中心(筹),河北 保定 071002
3 保定市新能源车辆动力工程技术研究中心,河北 保定 071002
Advances in the Catalytic Function and Catalytic Mechanism of Multi-component Compound Doping to Improve Hydrogen Desorption from MgH2
DONG Xiaoping1,2,3,*, ZHANG Zhaoqing1,2,3, YANG Liying1,2, XIN Shenghai1,2,3, LI Jian1,2
1 College of Quality and Technical Supervision, Hebei University, Baoding 071002, Hebei, China
2 Hebei New Energy Vehicle Power System Lightweight Technology Innovation Center(under preparation), Baoding 071002, Hebei, China
3 Baoding New Energy Vehicle Power Engineering Technology Research Center, Baoding 071002, Hebei, China
下载:  全 文 ( PDF ) ( 5777KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 镁氢化物的结构热力学稳定性高、释放氢动力学缓慢等延缓了其实用化进程,研究者通过向其掺杂适量的具有催化效应的合金元素或化合物来改善该问题。
MgH2氢化物释放氢难易程度与其反应焓变和活化能有关,其机制主要有:较大颗粒或大块材料中镁形核生长——MgH2基体表面的氢原子扩散模型;微米或纳米级的Mg形核生长——新形成镁外层的氢原子扩散模型。掺杂金属元素(M、RE)或二元氧化物或卤化物的催化作用在于形成的(M或RE)-H削弱了Mg-H键的结合能力,在机械球磨的协助下,二元氧化物或卤化物促进MgH2形成丰富的缺陷并增大其比表面积、诱导Mg表面改性、激发Mg-H解离等。
掺杂三元或多元化合物的贡献在于改善复合材料的微观特性、降低释放氢的起始温度和释放氢反应的活化能、提高释放氢速率。掺杂化合物对MgH2的催化机制主要为:调整了MgH2释放氢的反应途径、增加释放氢的反应活性点、在MgH2基体中分布均匀、具有独特的化学活性、与MgH2反应原位形成的产物——金属单质、氧化物或氟化物或合金、氢化物等具有多相协同催化作用。
本文归纳了改善MgH2释放氢掺杂的三元或多元化合物的催化作用与机制,提出了改善MgH2释放氢的热力学和动力学的研究措施并展望了其应用前景,以期为研制出使用条件温和、热力学/动力学条件不苛刻的MgH2氢化物提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
董小平
张昭卿
杨丽颖
忻胜海
李健
关键词:  MgH2氢化物  三元或多元化合物  热力学/动力学  催化机制    
Abstract: The high structural thermodynamic stability and slow kinetics of hydrogen release of magnesium hydride have slowed down its practicalization process, and researchers have improved the problem by doping it with appropriate amounts of alloying elements or compounds with catalytic effects.
The difficulty of releasing hydrogen from MgH2 hydride is related to its reaction enthalpy change and activation energy. The main mechanisms are:Mg nucleation growth in larger particles or bulk materials—hydrogen atom diffusion model on the surface of MgH2 matrix; micron or nanoscale Mg nucleation growth—a hydrogen atom diffusion model for the newly formed magnesium outer layer. The catalytic effect of doping metal elements (M, RE) or binary oxides or halides is that the formed (M or RE)-H weakens the binding ability of Mg-H bonds. With the assistance of mechanical ball milling, the binary oxides or halides promote MgH2 to form abundant defects and larger specific surface area, induce Mg surface modification, stimulate Mg-H dissociation, etc.
The contribution of doping ternary or multi-component compounds is to improve the microscopic properties of composite materials, reduce the initial temperature of hydrogen release and the activation energy of hydrogen release reaction, and increase the rate of hydrogen release; the main catalytic mechanism is that these compounds can adjust the hydrogen release reaction pathway of MgH2, increase the reactive sites for releasing hydrogen, uniform distribution in MgH2 matrix, unique chemical activity, products formed in situ by reaction with MgH2—metal element, oxide or fluoride or alloy, hydride have multiphase synergy catalysis.
This article summarizes the catalytic effects and mechanisms of hydrogen-doped ternary or multi-element compounds to improve the release of hydrogen from MgH2. The obstacles and mechanisms of hydrogen release from MgH2, the catalytic effects of metals and compounds, especially the catalytic effects and mechanisms of ternary or multi-element compounds, are introduced.
In this paper, the catalytic action and mechanism of improving the ternary or multi-component compounds doped with hydrogen release from MgH2 are summarized, and research measures to improve the thermodynamics and kinetics of hydrogen released by MgH2 are put forward and look forward to its application prospects, hoping to provide a reference for the development of MgH2 hydrides with mild use conditions and less severe thermodynamic/kinetic conditions.
Key words:  MgH2 hydride    ternary or multi-element compound    thermodynamics/kinetics    catalytic mechanism
出版日期:  2023-09-10      发布日期:  2023-09-05
ZTFLH:  TG139.1  
基金资助: 河北省自然科学基金(E2021201032);2023年河北省和河北大学校级大学生创新创业训练项目(S202310075044;2023232);教育部“春晖计划”合作研究项目(202200397);河北大学2022年实验室开放项目(sy202266)
通讯作者:  *董小平,河北大学质量技术监督学院机械设计制造及其自动化系副教授、硕士研究生导师,博士,河北省新能源汽车动力系统轻量化技术创新中心(筹)常务副主任。主要从事储氢材料的成分设计与性能调控研究,主持和参加完成了国家自然科学基金、河北省自然科学基金等研究项目10余项。在国内外期刊上发表储氢材料专题研究论文60余篇,发明专利2项,其中35 篇SCI/EI收录。dxp0316@163.com   
引用本文:    
董小平, 张昭卿, 杨丽颖, 忻胜海, 李健. 多组元化合物掺杂改善MgH2释放氢的催化作用与催化机制研究进展[J]. 材料导报, 2023, 37(17): 21100007-8.
DONG Xiaoping, ZHANG Zhaoqing, YANG Liying, XIN Shenghai, LI Jian. Advances in the Catalytic Function and Catalytic Mechanism of Multi-component Compound Doping to Improve Hydrogen Desorption from MgH2. Materials Reports, 2023, 37(17): 21100007-8.
链接本文:  
http://www.mater-rep.com/CN/10.11896/cldb.21100007  或          http://www.mater-rep.com/CN/Y2023/V37/I17/21100007
1 Broom D P, Webb C J, Fanourgakis G S, et al. International Journal of Hydrogen Energy, 2019, 44, 7768.
2 Hassan I A, Haitham S R, Mohamed A, et al. Renewable and Sustai-nable Energy Reviews, 2021, 149, 111311.
3 Papadias D D, Ahluwalia R, K. International Journal of Hydrogen Energy, 2021, 46, 34527.
4 Cevahir T, Mehmet A. Journal of Energy Storage, 2021, 40, 102676.
5 Yan N H, Lu X, Lu Z Y, et al. Journal of Magnesium and Alloys, 2022, 10, 1154.
6 Wang P, Tian Z H, Wang Z X, et al. International Journal of Hydrogen Energy, 2021, 46, 27107.
7 Paul D R, Sharma R, Sharma A, et al. Materials Today:Proceedings, 2021, 42, 1713.
8 Shang Y Y, Claudio P, Martin D, et al. Journal of Magnesium and Alloys, 2021, 9, 1837.
9 Luo Q, Li J D, Li B, et al. Journal of Magnesium and Alloys, 2019, 7, 58.
10 Hitam C N C, Aziz M A A, Ruhaimi A H, et al. International Journal of Hydrogen Energy, 2021, 46, 31067.
11 Ouyang L Z, Liu F, Wang H, et al. Journal of Alloys and Compounds, 2020, 832, 154865.
12 Qin L, Lu Y F, Qun L, et al. Journal of Magnesium and Alloys, 2021, 9, 1922.
13 Feng D C, Zhou D S, Zhao Z Y, et al. International Journal of Hydrogen Energy, 2021, 46, 33468.
14 Yartys V A, Lototskyy M V, Akiba E, et al, International Journal of Hydrogen Energy, 2019, 44, 7809.
15 Ding X, Chen R R, Zhang J X, et al. Journal of Alloys and Compounds, 2022, 897, 163137.
16 Yuan Z M, Sui Y Q, Zhai T T, et al. Materials Characterization, 2021, 178, 111248.
17 Yang T, Wang P, Xia C Q, et al. International Journal of Hydrogen Energy, 2019, 44, 6728
18 Abdalla M A, Shahzad H, Ozzan B N, et al. Energy Conversion and Management, 2018, 165, 602.
19 Jiri C, Lubomir K, Pavla R. International Journal of Hydrogen Energy, 2019, 44, 8315.
20 Zhang Y H, Sun H F, Zhang W, et al. Journal of Alloys and Compounds, 2021, 884, 160905.
21 Chen J N, Zhang J, He J H, et al. Journal of Physics and Chemistry of Solids, 2022, 161, 110483.
22 Strozi R B, Leiva D R, Huot J, et al. International Journal of Hydrogen Energy, 2021, 46, 2351.
23 Abdullah C, Mustafa K. Solid State Communications, 2018, 281, 38.
24 Yuan Z M, Sui Y Q, Zhai T T, et al. Materials Characterization, 2021, 178, 111248
25 Ismail M. International Journal of Hydrogen Energy, 2021, 46, 8621.
26 Ismail M, Mustafa N S, Juahir N, et al. Materials Chemistry and Physics, 2016, 170, 77.
27 Pang Y P, Yuan T, Yang J H, et al. Catalysis Today, 2018, 318, 107.
28 Dan L, Hu L, Zhu M. International Journal of Hydrogen Energy, 2019, 44, 29249.
29 Sanjay K, Ankur J, Yamaguchi S, et al. International Journal of Hydrogen Energy, 2017, 42, 6152.
30 Apurba S, Ha-Young L, Shen S H, et al. Applied Catalysis B:Environmental, 2018, 237, 613.
31 Berezovets V, Kytsya A, Zavaliy I, et al. International Journal of Hydrogen Energy, 2021, 46, 40278.
32 Shetty T, Szpunar J A, Faye O, et al. International Journal of Hydrogen Energy, 2020, 45, 25890.
33 Zhang J, Yan S, Qu H. International Journal of Hydrogen Energy, 2018, 43, 1545.
34 Yahya M S, Ismail M. Journal of Energy Chemistry, 2019, 28, 46.
35 Ismail M. International Journal of Hydrogen Energy, 2021, 46, 8621.
36 Zhang J Q, Hou Q H, Chang J Q, et al. Solid State Science, 2021, 121, 106750.
37 Yahya M S, Ismail M. Journal of Energy Chemistry, 2019, 28, 46.
38 Yahya M S, Ismail M. International Journal of Hydrogen Energy, 2018, 43, 6244.
39 Idris N H, Mustafa N S, Ismail M. International Journal of Hydrogen Energy, 2017, 42, 21114.
40 Ismail M, Mustafa N S, Ali N A, et al. International Journal of Hydrogen Energy, 2019, 44, 318.
41 Yahya M S, Sulaiman N N, Ismail M, et al. International Journal of Hydrogen Energy, 2018, 43, 14532.
42 Sazelee N A, Idris N H, Ismail M. International Journal of Hydrogen Energy, 2018, 43, 20853.
43 Sulaiman N N, Juahir N, Ismail M. Journal of Energy Chemistry, 2016, 25, 832.
44 Sulaiman N N, Ismail M. Dalton Transactions, 2016, 45, 19380.
45 Mustafa N S, Sulaiman N N, Ismail M. RSC Advances, 2016, 16, 110004.
46 Zhang J, Shan J W, Li P, et al. Journal of Alloys and Compounds, 2015, 643, 174.
47 Shan J W, Li P, Wan Q, et al. Journal of Power Sources, 2014, 268, 778.
48 Li P, Wan Q, Li Z L, et al. Journal of Power Sources, 2013, 239, 201.
49 Xu G, Shen N, Chen L J, et al. Materials Research Bulletin, 2017, 89, 197.
50 Wu C Z, Wang Y L, Liu Y, et al. Catalysis Today, 2018, 318, 113.
51 Cheng Y, Zhang W, Liu J, et al. International Journal of Hydrogen Energy, 2017, 42, 356.
52 Baricco M, Rahman M W, Livraghi S, et al. Journal of Alloys and Compounds, 2012, 536, S216.
53 Zhang X, Shen Z Y, Jian N, et al. International Journal of Hydrogen Energy, 2018, 43, 23327.
54 Zhang W, Shen N, Han S M, et al. Materials Research Bulletin, 2015, 72, 197.
55 Shen Z Y, Wang Z Y, Zhang M, et al. Materialia, 2018, 1, 114.
56 Zhang X, Shen Z Y, Jian N, et al. Chinese Journal of Inorganic Chemistry, 2019, 35(1), 101(in Chinese).
张欣, 沈正阳, 简旎, 等. 无机化学学报, 2019, 35(1), 101.
57 Halim Y F A, Sulaiman N N, Ismail M. International Journal of Hydrogen Energy, 2019, 44, 30583.
58 Zhang J, Tang W, Shao L, et al. Journal of Materials Engineering, 2016, 44(11), 101(in Chinese).
张健, 汤旺, 邵磊, 等. 材料工程, 2016, 44(11), 101.
59 Juahir N, Mustafa N S, Sinin A M, et al. RSC Advances, 2015, 5, 60983.
60 Wang K, Du H F, Wang Z Y, et al. International Journal of Hydrogen Energy, 2017, 42, 4244.
61 Ding Z M, Fu Y K, Wang Y, et al. International Journal of Hydrogen Energy, 2019, 44, 8347.
62 Fu Y K, Ding Z M, Zhang L, et al. Progress in Natural Science:Materials International, 2021, 31, 264.
63 Zhang W, Cheng Y, Li Y H, et al. Journal of Rare Earths, 2015, 33, 334.
64 Wang Z Y, Zhang X L, Ren Z H, et al. Journal of Materials Chemistry A, 2019, 7, 14244.
[1] 董小平, 陈亚方, 苏建文, 高腾远, 马玉蕊, 李旭. 储氢合金中氢致非晶化的研究进展[J]. 材料导报, 2020, 34(15): 15110-15115.
[2] 李英杰, 姚继伟, 雍辉, 马江微, 王帅, 胡季帆. 稀土掺杂对稀土-镁基合金储氢性能的影响[J]. 材料导报, 2022, 36(20): 22010264-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed