Advances in the Catalytic Function and Catalytic Mechanism of Multi-component Compound Doping to Improve Hydrogen Desorption from MgH2
DONG Xiaoping1,2,3,*, ZHANG Zhaoqing1,2,3, YANG Liying1,2, XIN Shenghai1,2,3, LI Jian1,2
1 College of Quality and Technical Supervision, Hebei University, Baoding 071002, Hebei, China 2 Hebei New Energy Vehicle Power System Lightweight Technology Innovation Center(under preparation), Baoding 071002, Hebei, China 3 Baoding New Energy Vehicle Power Engineering Technology Research Center, Baoding 071002, Hebei, China
Abstract: The high structural thermodynamic stability and slow kinetics of hydrogen release of magnesium hydride have slowed down its practicalization process, and researchers have improved the problem by doping it with appropriate amounts of alloying elements or compounds with catalytic effects. The difficulty of releasing hydrogen from MgH2 hydride is related to its reaction enthalpy change and activation energy. The main mechanisms are:Mg nucleation growth in larger particles or bulk materials—hydrogen atom diffusion model on the surface of MgH2 matrix; micron or nanoscale Mg nucleation growth—a hydrogen atom diffusion model for the newly formed magnesium outer layer. The catalytic effect of doping metal elements (M, RE) or binary oxides or halides is that the formed (M or RE)-H weakens the binding ability of Mg-H bonds. With the assistance of mechanical ball milling, the binary oxides or halides promote MgH2 to form abundant defects and larger specific surface area, induce Mg surface modification, stimulate Mg-H dissociation, etc. The contribution of doping ternary or multi-component compounds is to improve the microscopic properties of composite materials, reduce the initial temperature of hydrogen release and the activation energy of hydrogen release reaction, and increase the rate of hydrogen release; the main catalytic mechanism is that these compounds can adjust the hydrogen release reaction pathway of MgH2, increase the reactive sites for releasing hydrogen, uniform distribution in MgH2 matrix, unique chemical activity, products formed in situ by reaction with MgH2—metal element, oxide or fluoride or alloy, hydride have multiphase synergy catalysis. This article summarizes the catalytic effects and mechanisms of hydrogen-doped ternary or multi-element compounds to improve the release of hydrogen from MgH2. The obstacles and mechanisms of hydrogen release from MgH2, the catalytic effects of metals and compounds, especially the catalytic effects and mechanisms of ternary or multi-element compounds, are introduced. In this paper, the catalytic action and mechanism of improving the ternary or multi-component compounds doped with hydrogen release from MgH2 are summarized, and research measures to improve the thermodynamics and kinetics of hydrogen released by MgH2 are put forward and look forward to its application prospects, hoping to provide a reference for the development of MgH2 hydrides with mild use conditions and less severe thermodynamic/kinetic conditions.
董小平, 张昭卿, 杨丽颖, 忻胜海, 李健. 多组元化合物掺杂改善MgH2释放氢的催化作用与催化机制研究进展[J]. 材料导报, 2023, 37(17): 21100007-8.
DONG Xiaoping, ZHANG Zhaoqing, YANG Liying, XIN Shenghai, LI Jian. Advances in the Catalytic Function and Catalytic Mechanism of Multi-component Compound Doping to Improve Hydrogen Desorption from MgH2. Materials Reports, 2023, 37(17): 21100007-8.
1 Broom D P, Webb C J, Fanourgakis G S, et al. International Journal of Hydrogen Energy, 2019, 44, 7768. 2 Hassan I A, Haitham S R, Mohamed A, et al. Renewable and Sustai-nable Energy Reviews, 2021, 149, 111311. 3 Papadias D D, Ahluwalia R, K. International Journal of Hydrogen Energy, 2021, 46, 34527. 4 Cevahir T, Mehmet A. Journal of Energy Storage, 2021, 40, 102676. 5 Yan N H, Lu X, Lu Z Y, et al. Journal of Magnesium and Alloys, 2022, 10, 1154. 6 Wang P, Tian Z H, Wang Z X, et al. International Journal of Hydrogen Energy, 2021, 46, 27107. 7 Paul D R, Sharma R, Sharma A, et al. Materials Today:Proceedings, 2021, 42, 1713. 8 Shang Y Y, Claudio P, Martin D, et al. Journal of Magnesium and Alloys, 2021, 9, 1837. 9 Luo Q, Li J D, Li B, et al. Journal of Magnesium and Alloys, 2019, 7, 58. 10 Hitam C N C, Aziz M A A, Ruhaimi A H, et al. International Journal of Hydrogen Energy, 2021, 46, 31067. 11 Ouyang L Z, Liu F, Wang H, et al. Journal of Alloys and Compounds, 2020, 832, 154865. 12 Qin L, Lu Y F, Qun L, et al. Journal of Magnesium and Alloys, 2021, 9, 1922. 13 Feng D C, Zhou D S, Zhao Z Y, et al. International Journal of Hydrogen Energy, 2021, 46, 33468. 14 Yartys V A, Lototskyy M V, Akiba E, et al, International Journal of Hydrogen Energy, 2019, 44, 7809. 15 Ding X, Chen R R, Zhang J X, et al. Journal of Alloys and Compounds, 2022, 897, 163137. 16 Yuan Z M, Sui Y Q, Zhai T T, et al. Materials Characterization, 2021, 178, 111248. 17 Yang T, Wang P, Xia C Q, et al. International Journal of Hydrogen Energy, 2019, 44, 6728 18 Abdalla M A, Shahzad H, Ozzan B N, et al. Energy Conversion and Management, 2018, 165, 602. 19 Jiri C, Lubomir K, Pavla R. International Journal of Hydrogen Energy, 2019, 44, 8315. 20 Zhang Y H, Sun H F, Zhang W, et al. Journal of Alloys and Compounds, 2021, 884, 160905. 21 Chen J N, Zhang J, He J H, et al. Journal of Physics and Chemistry of Solids, 2022, 161, 110483. 22 Strozi R B, Leiva D R, Huot J, et al. International Journal of Hydrogen Energy, 2021, 46, 2351. 23 Abdullah C, Mustafa K. Solid State Communications, 2018, 281, 38. 24 Yuan Z M, Sui Y Q, Zhai T T, et al. Materials Characterization, 2021, 178, 111248 25 Ismail M. International Journal of Hydrogen Energy, 2021, 46, 8621. 26 Ismail M, Mustafa N S, Juahir N, et al. Materials Chemistry and Physics, 2016, 170, 77. 27 Pang Y P, Yuan T, Yang J H, et al. Catalysis Today, 2018, 318, 107. 28 Dan L, Hu L, Zhu M. International Journal of Hydrogen Energy, 2019, 44, 29249. 29 Sanjay K, Ankur J, Yamaguchi S, et al. International Journal of Hydrogen Energy, 2017, 42, 6152. 30 Apurba S, Ha-Young L, Shen S H, et al. Applied Catalysis B:Environmental, 2018, 237, 613. 31 Berezovets V, Kytsya A, Zavaliy I, et al. International Journal of Hydrogen Energy, 2021, 46, 40278. 32 Shetty T, Szpunar J A, Faye O, et al. International Journal of Hydrogen Energy, 2020, 45, 25890. 33 Zhang J, Yan S, Qu H. International Journal of Hydrogen Energy, 2018, 43, 1545. 34 Yahya M S, Ismail M. Journal of Energy Chemistry, 2019, 28, 46. 35 Ismail M. International Journal of Hydrogen Energy, 2021, 46, 8621. 36 Zhang J Q, Hou Q H, Chang J Q, et al. Solid State Science, 2021, 121, 106750. 37 Yahya M S, Ismail M. Journal of Energy Chemistry, 2019, 28, 46. 38 Yahya M S, Ismail M. International Journal of Hydrogen Energy, 2018, 43, 6244. 39 Idris N H, Mustafa N S, Ismail M. International Journal of Hydrogen Energy, 2017, 42, 21114. 40 Ismail M, Mustafa N S, Ali N A, et al. International Journal of Hydrogen Energy, 2019, 44, 318. 41 Yahya M S, Sulaiman N N, Ismail M, et al. International Journal of Hydrogen Energy, 2018, 43, 14532. 42 Sazelee N A, Idris N H, Ismail M. International Journal of Hydrogen Energy, 2018, 43, 20853. 43 Sulaiman N N, Juahir N, Ismail M. Journal of Energy Chemistry, 2016, 25, 832. 44 Sulaiman N N, Ismail M. Dalton Transactions, 2016, 45, 19380. 45 Mustafa N S, Sulaiman N N, Ismail M. RSC Advances, 2016, 16, 110004. 46 Zhang J, Shan J W, Li P, et al. Journal of Alloys and Compounds, 2015, 643, 174. 47 Shan J W, Li P, Wan Q, et al. Journal of Power Sources, 2014, 268, 778. 48 Li P, Wan Q, Li Z L, et al. Journal of Power Sources, 2013, 239, 201. 49 Xu G, Shen N, Chen L J, et al. Materials Research Bulletin, 2017, 89, 197. 50 Wu C Z, Wang Y L, Liu Y, et al. Catalysis Today, 2018, 318, 113. 51 Cheng Y, Zhang W, Liu J, et al. International Journal of Hydrogen Energy, 2017, 42, 356. 52 Baricco M, Rahman M W, Livraghi S, et al. Journal of Alloys and Compounds, 2012, 536, S216. 53 Zhang X, Shen Z Y, Jian N, et al. International Journal of Hydrogen Energy, 2018, 43, 23327. 54 Zhang W, Shen N, Han S M, et al. Materials Research Bulletin, 2015, 72, 197. 55 Shen Z Y, Wang Z Y, Zhang M, et al. Materialia, 2018, 1, 114. 56 Zhang X, Shen Z Y, Jian N, et al. Chinese Journal of Inorganic Chemistry, 2019, 35(1), 101(in Chinese). 张欣, 沈正阳, 简旎, 等. 无机化学学报, 2019, 35(1), 101. 57 Halim Y F A, Sulaiman N N, Ismail M. International Journal of Hydrogen Energy, 2019, 44, 30583. 58 Zhang J, Tang W, Shao L, et al. Journal of Materials Engineering, 2016, 44(11), 101(in Chinese). 张健, 汤旺, 邵磊, 等. 材料工程, 2016, 44(11), 101. 59 Juahir N, Mustafa N S, Sinin A M, et al. RSC Advances, 2015, 5, 60983. 60 Wang K, Du H F, Wang Z Y, et al. International Journal of Hydrogen Energy, 2017, 42, 4244. 61 Ding Z M, Fu Y K, Wang Y, et al. International Journal of Hydrogen Energy, 2019, 44, 8347. 62 Fu Y K, Ding Z M, Zhang L, et al. Progress in Natural Science:Materials International, 2021, 31, 264. 63 Zhang W, Cheng Y, Li Y H, et al. Journal of Rare Earths, 2015, 33, 334. 64 Wang Z Y, Zhang X L, Ren Z H, et al. Journal of Materials Chemistry A, 2019, 7, 14244.