Please wait a minute...
材料导报  2025, Vol. 39 Issue (23): 24120022-10    https://doi.org/10.11896/cldb.24120022
  无机非金属及其复合材料 |
混杂纤维高强高延性水泥基复合材料弯曲性能及预测模型
万思宇1, 苏三庆1, 曹振2,*, 王照耀3
1 西安建筑科技大学土木工程学院,西安 710055
2 西安建筑科技大学城市发展与现代交通学院,西安 710055
3 西安建筑科技大学理学院,西安 710055
Flexural Performance and Prediction Model of High-strength ECC with Hybrid Fiber
WAN Siyu1, SU Sanqing1, CAO Zhen2,*, WANG Zhaoyao3
1 School of Civil Engineering, Xi’an University of Architecture and Technology, Xi’an 710055, China
2 School of Urban Development and Modern Transportation, Xi’an University of Architecture and Technology, Xi’an 710055, China
3 School of Science, Xi’an University of Architecture and Technology, Xi’an 710055, China
下载:  全 文 ( PDF ) ( 39803KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 高强高延性水泥基复合材料(HS-ECC)在土木工程领域具有广阔的应用前景,深入了解其弯曲性能是实现工程应用的前提。目前对聚乙烯纤维(PEF)与钢纤维(SF)混杂增强机理的研究相对较少,且缺乏有效的弯曲性能预测模型。鉴于此,本工作采用坍落度试验、抗压试验及四点弯曲试验,研究PEF-SF混杂纤维掺量及混杂比例对HS-ECC工作性能、抗压强度及弯曲性能的影响,并建立弯曲性能预测模型。研究结果表明,PEF与SF均会降低工作性能,且PEF的负面影响更为显著。SF对抗压强度和抗弯强度的增强作用更为突出,但增强效率随纤维掺量增加而下降。PEF与SF对峰值挠度均有一定提升作用,提高PEF掺量有利于增强变形能力,而SF掺量过高则会削弱挠曲硬化特征,影响弯曲性能。综合考虑强度、变形能力及成本,建议SF掺量不超过0.6%。基于细观分析,提出了HS-ECC单轴受拉/压本构模型,并建立了弯曲性能预测模型,该模型能较好地预测PEF-SF混杂HS-ECC的弯曲性能,为HS-ECC在实际工程中的应用提供了一定理论支持。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
万思宇
苏三庆
曹振
王照耀
关键词:  高强高延性水泥基复合材料  混杂纤维  弯曲性能  本构模型  预测模型    
Abstract: High-strength engineered cementitious composite (HS-ECC) holds promising application prospects in civil engineering, and a thorough understanding of their flexural properties is essential for practical engineering applications. Currently, there is a relative lack of research on the hybrid reinforcement mechanism of polyethylene fibers (PEF) and steel fibers (SF) in HS-ECC, and effective predictive models for flexural properties are also lacking. To address this, the influence of hybrid PEF-SF fiber content and hyrbid ratio on the workability, compressive strength, and flexural properties of HS-ECC were investigated through slump tests, compressive strength tests, and four-point bending tests. Furthermore, a predictive model for flexural properties was established. The results indicate that both PEF and SF degrade the cementitous composite’s workability, with PEF having a more significant negative impact. SF exhibits a more pronounced enhancement effect on flexural strength and compressive strength, but the fiber reinforcement efficiency decreases with the increasing of fiber content. Both PEF and SF contribute to increasing peak deflection, with higher PEF content being beneficial for enhancing deformability, whereas excessive SF content can weaken the deflection hardening characteristics and affect flexural performance. Considering strength, deformability, and cost, the SF content should not exceed 0.6%. Based on micro-analysis, a uniaxial tensile/compressive constitutive model for HS-ECC was proposed, and a predictive model for flexural properties was established. This model can effectively predict the flexural properties of PEF-SF hybrid HS-ECC, providing theoretical support for its application in practical engineering.
Key words:  high-strength engineered cementitious composite    hybrid fiber    flexural performance    constitutive model    prediction model
出版日期:  2025-12-10      发布日期:  2025-12-03
ZTFLH:  TU528.572  
基金资助: 陕西省自然科学基础研究计划(2023-JC-QN-549);陕西省博士后科研项目(2023BSHEDZZ269)
通讯作者:  *曹振,西安建筑科技大学城市发展与现代交通学院教授、博士研究生导师,目前主要从事高性能混凝土力学性能方面的研究。Railcaozhen@xauat.edu.cn   
作者简介:  万思宇,西安建筑科技大学土木工程学院博士研究生,在苏三庆教授和曹振教授的指导下进行研究。目前主要从事混杂纤维高强高延性水泥基复合材料力学性能方面的研究。
引用本文:    
万思宇, 苏三庆, 曹振, 王照耀. 混杂纤维高强高延性水泥基复合材料弯曲性能及预测模型[J]. 材料导报, 2025, 39(23): 24120022-10.
WAN Siyu, SU Sanqing, CAO Zhen, WANG Zhaoyao. Flexural Performance and Prediction Model of High-strength ECC with Hybrid Fiber. Materials Reports, 2025, 39(23): 24120022-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24120022  或          https://www.mater-rep.com/CN/Y2025/V39/I23/24120022
1 Zhang T, Li X Q, Zhang L, et al. Materials Reports, 2023, 37(S1), 583(in Chinese).
张田, 李晓琴, 张莉, 等. 材料导报, 2023, 37(S1), 583.
2 Jiang S Y, Gong H W, Yao W L, et al. Materials Reports, 2018, 32(23), 4192(in Chinese).
江世永, 龚宏伟, 姚未来, 等. 材料导报, 2018, 32(23), 4192.
3 Li B, Meng X Z, Zhang C, et al. Materials Research and Application, 2023, 17(1), 158(in Chinese).
李犇, 孟宪忠, 张琛, 等. 材料研究与应用, 2023, 17(1), 158.
4 Zhou J, Pan J, Leung C K Y. Journal of Materials in Civil Engineering, 2015, 27(1), 04014111.
5 Huang B T, Li Q H, Xu S L. Journal of Structural Engineering, 2019, 145(1), 04018234.
6 Zhang D, Yu J, Wu H, et al. Composites Part B:Engineering, 2020, 184, 107741.
7 Zhao J, Yan C, Liu S, et al. Construction and Building Materials, 2021, 268, 121169.
8 Lu C, Pan J, Luo B, et al. Construction and Building Materials, 2022, 331, 127296.
9 Yu K Q, Yu J T, Dai J G, et al. Construction and Building Materials, 2018, 158, 217.
10 Liu D, Yu J, Qin F, et al. Case Studies in Construction Materials, 2023, 18, e01961.
11 Xu L Y, Huang B T, Li V C, et al. Cement and Concrete Composites, 2022, 125, 104296.
12 Huang B T, Zhu J X, Weng K F, et al. Cement and Concrete Composites, 2022, 129, 104464.
13 Wu J D, Guo L P, Cao Y Z, et al. Cement and Concrete Composites, 2022, 126, 104371.
14 Ahmed S F U, Maalej M, Paramasivam P. Construction and Building Materials, 2007, 21(5), 1088.
15 Zhou Y, Xi B, Yu K, et al. Materials, 2018, 11(8), 1448.
16 Tinoco M P, De Andrade S F. Journal of Materials Research and Technology, 2021, 11, 754.
17 Wang Z B, Zhang J. Concrete, 2018(4), 65(in Chinese).
王振波, 张君. 混凝土, 2018(4), 65.
18 Liu Z, Liu S, Takasu K, et al. Construction and Building Materials, 2024, 450, 138674.
19 American Society of Testing Materials. ASTM C 1609 standard test method for flexural performance of fiber-reinforced concrete (using beam with third-point loading), West Conshohocken, ASTM Internation, 2024, pp.5.
20 Baby F, Graybeal B, Marchand P, et al. Materials and Structures, 2013, 46(8), 1337.
21 Han T S, Feenstr P H, Billington S L. ACI Structural Journal, 2003, 100(6), 749.
22 Bai R, Liu S G, Yan C W, et al. Construction and Building Materials, 2020, 247(3), 118110.
23 Meng D, Huang T, Zhang Y X, et al. Construction and Building Materials, 2017, 141(3), 259.
24 Huang H, Gao X, Khayat K H. Cement and Concrete Composites, 2021, 118, 103971.
25 Ministry of Housing and Urban Rural Development of the People’s Republic of China. Standard for design of concrete structures, GB/T 50010-2010, China Architecture and Building Press, China, 2024(in Chinese).
中华人民共和国住房和城乡建设部. 混凝土结构设计标准, GB/T 50010-2010, 中国建筑工业出版社, 2024.
26 Huo L, Bi J, Zhao Y, et al. Construction and Building Materials, 2021, 280, 122423.
27 Li V C, Wang Y, Backer S. Composites Communications, 1990, 21(2), 132.
28 Xu B, Ju J, Shi H. International Journal of Damage Mechanics, 2011, 20(6), 922.
29 Ning X L, Ding Y N, Zhang F S. Construction and Building Materials, 2015, 93, 644.
30 Lin Z, Kanda T, Li V C. Journal of Concrete Science and Engineering, 1999, 1, 173.
31 Liu J P, Tang J H, Han F Y. China Civil Engineering Journal, 2021, 54(10), 47(in Chinese).
刘加平, 汤金辉, 韩方玉. 土木工程学报, 2021, 54(10), 47.
32 Lin Z, Li V C. Journal of the Mechanics and Physics of Solids, 1997, 45(5), 763.
33 Li J, Qiu J, Weng J, et al. Construction and Building Materials, 2023, 362, 605.
34 Zhang Y, Zhang S, Deng M. Case Studies in Construction Materials, 2022, 17, e01573.
[1] 李刊, 魏智强, 路承功, 蒲育. 纳米SiO2改性聚合物水泥基复合材料孔隙结构演变特征及强度预测[J]. 材料导报, 2025, 39(6): 24070202-10.
[2] 李自强, 崔素萍, 马忠诚, 王亚丽, 王晶, 刘云, 乔志杨. 机器学习算法用于水泥强度预测的研究进展[J]. 材料导报, 2025, 39(5): 23120133-12.
[3] 雷经发, 赵晨霞, 刘涛, 沈朝阳, 李思悦. 激光熔覆Inconel 625合金高温高应变率下的力学行为及本构模型[J]. 材料导报, 2025, 39(4): 23120263-7.
[4] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[5] 孙丽, 蓝世航, 王超. 聚丙烯纤维增韧海砂珊瑚混凝土单轴压缩应力-应变本构关系及微观结构[J]. 材料导报, 2025, 39(23): 24070114-9.
[6] 秦龙, 何建丽, 董万鹏, 黄少波, 王辉, 王志海. 镁合金高温本构模型研究进展[J]. 材料导报, 2025, 39(23): 24110218-8.
[7] 马骏杰, 冯治国, 康分行, 刘勇. 基于硬度的TA1薄壁圆管钉套本构模型研究[J]. 材料导报, 2025, 39(23): 24090094-8.
[8] 沙东, 李根, 王芳, 唐民, 刘乙丁. 基于BBR试验的高模量沥青低温本构模型的建立与评价[J]. 材料导报, 2025, 39(22): 24080054-7.
[9] 殷溥隆, 李艳, 田勇, 翟越, 李乐, 何峻宇, 贾宇, 程禹翰. 冻融循环作用下黄土基水泥土三轴压缩力学特性及本构模型研究[J]. 材料导报, 2025, 39(21): 24100069-8.
[10] 敬彬, 胡文军, 陶俊林. Taylor撞击实验及其应用研究进展[J]. 材料导报, 2025, 39(2): 23100210-10.
[11] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[12] 黄耀英, 方晨, 邵成羽, 李泽鹏, 朱赵辉. 非饱和水工混凝土冻融劣化微观孔隙结构与宏观性能关系研究[J]. 材料导报, 2025, 39(19): 24080219-7.
[13] 文波, 田伟, 张路, 牛荻涛, 嵇智远. 玄武岩-聚丙烯纤维增强混凝土在杂散电流与硫酸盐作用下的劣化规律[J]. 材料导报, 2025, 39(18): 24040090-7.
[14] 张路, 徐智明, 文波, 牛荻涛, 李辉, 梁浩男, 嵇智远. 杂散电流作用下混杂纤维混凝土SO42-迁移与反应规律研究[J]. 材料导报, 2025, 39(18): 24060080-8.
[15] 杨涛, 刘章锐, 刘博, 张阳. 考虑应变幅值影响的超弹性SMA相变棘轮行为宏观唯象本构模型[J]. 材料导报, 2025, 39(17): 24050012-6.
[1] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[2] LIU Shuaiyang, WANG Aiqin, LYU Shijing, TIAN Hanwei. Interfacial Properties and Further Processing of Cu/Al Laminated Composite: a Review[J]. Materials Reports, 2018, 32(5): 828 -835 .
[3] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[4] CAO Xiuzhong, ZHAO Bing, HAN Xiuquan, HOU Hongliang, QU Haitao. Research on Deformation Mechanism of SiC Fiber Reinforced Titanium Matrix Composites Subjected to High Temperature Axial Tension[J]. Materials Reports, 2017, 31(8): 88 -93 .
[5] ZHANG Jiaqing, ZHANG Bosi, WANG Liufang, FAN Minghao, XIE Hui, LI Wei. The State of the Art of Combustion Behavior of Live Wires and Cables[J]. Materials Reports, 2017, 31(15): 1 -9 .
[6] LI Xueyun, WANG Hezhong. Optimization and Characterization of TEMPO-Mediated Oxidization of Nanochitin Whiskers[J]. Materials Reports, 2018, 32(10): 1597 -1601 .
[7] ZHAO Qingchen, WANG Jinlong, ZHANG Yuanliang, SHEN Yihong, LIU Shujie. Fatigue Behavior and Fatigue Life for FV520B-I at Different Loading Frequencies[J]. Materials Reports, 2018, 32(16): 2837 -2841 .
[8] ZHOU Chao, WANG Hui, OUYANG Liuzhang, ZHU Min. The State of the Art of Hydrogen Storage Materials for High-pressure Hybrid Hydrogen Vessel[J]. Materials Reports, 2019, 33(1): 117 -126 .
[9] WANG Huifen, LIU Gang, CAO Kangli, YANG Biqi, XU Jun, LAN Shaofei, ZHANG Lixin. Development Status of Carbon Nanotube Materials and Their Application Prospects in Spacecraft[J]. Materials Reports, 2019, 33(z1): 78 -83 .
[10] LEI Lin, YANG Qingbo, ZHANG Zhiqing, FAN Xiangze, LI Xu, YANG Mou, DENG Zanhui. Multi-pass Compression Behavior and Microstructure Evolution of AA2195 Aluminum Lithium Alloy[J]. Materials Reports, 2019, 33(z1): 348 -352 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed