Please wait a minute...
材料导报  2025, Vol. 39 Issue (22): 25020177-9    https://doi.org/10.11896/cldb.25020177
  无机非金属及其复合材料 |
风化软岩弃渣在道路基层的应用研究
刘蕾1, 姚勇2,3,*, 张玲玲3, 唐子歆3, 仇为波4
1 西南科技大学材料与化学学院,四川 绵阳 621010
2 工程材料与结构冲击振动四川省重点实验室,四川 绵阳 621010
3 西南科技大学土木工程与建筑学院,四川 绵阳 621010
4 成都市市政开发总公司,成都 610072
Research on the Application of Weathered Soft Rock Waste in Road Base
LIU Lei1, YAO Yong2,3,*, ZHANG Lingling3, TANG Zixin3, QIU Weibo4
1 School of Materials and Chemistry, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
2 Shock and Vibration of Engineering Materials and Structures Key Laboratory of Sichuan Province, Mianyang 621010, Sichuan, China
3 School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
4 Chengdu Municipal Development Corporation, Chengdu 610072, China
下载:  全 文 ( PDF ) ( 34918KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 将某城市主干道道路沿线风化软岩弃渣替代碎石,用于水泥稳定碎石基层,采用水泥-土壤固化剂作为复合型固化剂进行处理。通过抗压强度、水稳定性、X射线衍射、电镜扫描及同步热分析等试验,研究不同固化剂下风化软岩混合集料的性能及微观结构。结果表明,固化风化软岩集料的抗压强度、水稳定性达到传统水泥稳定碎石的性能水平,部分配比优于传统水泥稳定碎石,7 d抗压强度最高提升0.8 MPa。复合型固化剂较单一水泥固化剂对风化软岩混合集料的7 d抗压强度提升了0.2~1.1 MPa,水稳系数提升了0.01~0.05。养护14 d、28 d、60 d后,复合型固化剂作用下风化软岩集料抗压强度提升了50.56%~64.71%,水稳系数提升了4.17%~8.07%,龄期与抗压强度、饱水抗压强度呈一元二次拟合关系。E型复合型固化剂(8%SN+0.015%E型)下试件性能最优,60 d抗压强度达8.1 MPa,水稳系数达0.95。在复合型固化剂作用下,内部水化程度优于单一水泥对风化软岩集料的固化稳定作用,生成了更多水化硅酸钙、钙矾石等产物,针棒状、凝胶状产物与分散的片层状软岩颗粒相互覆盖、填充、连结,从而提高了固化风化软岩集料的整体强度。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
刘蕾
姚勇
张玲玲
唐子歆
仇为波
关键词:  道路工程  固化风化软岩集料  试验研究  风化软岩弃渣  微观结构    
Abstract: Weathered soft rock waste was used to replace crushed stone in cement-stabilized base for urban main road, and composite stabilizers composed of cement and soil stabilizers were used to treat solidified weathered soft rock aggregate. The performance and microstructure of weathered soft rock mixed aggregates under different stabilizers were investigated via compressive strength, water stability, XRD, SEM, and thermal analysis. The findings show that the stabilized weathered soft rock aggregates exhibit equivalent or superior compressive strength and water stability compared to conventional cement-stabilized crushed stone, with a maximum increase of 0.8 MPa in 7 d compressive strength. The 7 d compressive strength and the water stability coefficient of weathered soft rock mixed aggregates are enhanced by 0.2—1.1 MPa and 0.01—0.05, respectively, compared to those treated with the cement stabilizer. After 14, 28, and 60 days of curing, the composite stabilizer enhances the compressive strength and the water stability coefficient of weathered soft rock mixed aggregates by 50.56%—64.71% and 4.17%—8.07%, respectively. Both the compressive strength and saturated compressive strength exhibited quadratic polynomial relationships with curing age. When stabilized with the Type E soil stabilizer (8% SN + 0.015% Type E), the specimen has the best mechanical performance, exhibiting the 60 d compressive strength of 8.1 MPa and water stability coefficient of 0.95. The composite stabilizer promotes superior hydration compared to cement stabilizer in stabilizing weathered soft rock aggregates, generating more hydration products including C-S-H and ettringite. The needle-like, gel-like product interconnects with scattered sheet-like soft rock particles and enhances the compressive strength of the weathered soft rock mixed aggregates.
Key words:  road engineering    solidified weathered soft rock aggregate    experimental research    weathered soft rock waste    microstructure
出版日期:  2025-11-25      发布日期:  2025-11-14
ZTFLH:  U416.1  
基金资助: 四川省自然科学基金(2024NSFSC0228);四川省高等学校重点实验室科研项目(SC_FQWLY-2022-Y-02)
通讯作者:  *姚勇,博士,西南科技大学土木工程与建筑学院教授、博士研究生导师。目前主要从事工程结构防灾减灾、绿色建筑及建造、新型结构体系及材料等方面的研究工作。yy001221@163.com   
作者简介:  刘蕾,西南科技大学材料与化学学院博士研究生,在姚勇教授的指导下进行研究。目前主要研究领域为固废材料资源化利用及土壤固化处置。
引用本文:    
刘蕾, 姚勇, 张玲玲, 唐子歆, 仇为波. 风化软岩弃渣在道路基层的应用研究[J]. 材料导报, 2025, 39(22): 25020177-9.
LIU Lei, YAO Yong, ZHANG Lingling, TANG Zixin, QIU Weibo. Research on the Application of Weathered Soft Rock Waste in Road Base. Materials Reports, 2025, 39(22): 25020177-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.25020177  或          https://www.mater-rep.com/CN/Y2025/V39/I22/25020177
1 Li G C, Qi C C, Sun Y T, et al. Shock and Vibration, 2017, 2017(1), 4010376.
2 Jia H L, Wang T, Xiang W, et al. Chinese Journal of Rock Mechanics and Engineering, 2018, 37(7), 1618(in Chinese).
贾海梁, 王婷, 项伟, 等. 岩石力学与工程学报, 2018, 37(7), 1618.
3 Li A R, Deng H, Wang H J, et al. Hydrogeology & Engineering Geology, 2021, 48(2), 106(in Chinese)
李安润, 邓辉, 王红娟, 等. 水文地质工程地质, 2021, 48(2), 106.
4 Zhang S G, Guo J H, Yun X, et al. Journal of Liaoning Technical University (Natural Science), 2023, 42(6), 649(in Chinese)
张树光, 郭家昊, 云霄, 等. 辽宁工程技术大学学报(自然科学版), 2023, 42(6), 649.
5 Su C L. Journal of Highway and Transportation Research and Development, 2020, 37(2), 40(in Chinese)
苏成林. 公路交通科技, 2020, 37(2), 40.
6 Li S L, Zhang H, Gai W P. Journal of Highway and Transportation Research and Development (Applied Technology Edition), 2017, 13(7), 8(in Chinese)
李岁论, 张浩, 盖卫鹏. 公路交通科技(应用技术版), 2017, 13(7), 8.
7 Nie X M, Sun M Q, Feng B P. Journal of Highway and Transportation Research and Development (Applied Technology Edition), 2017, 13(7), 23(in Chinese)
聂席明, 孙梦青, 冯宝平. 公路交通科技(应用技术版), 2017, 13(7), 23.
8 Chen F L, Wen Y B, Shan J H, et al. Bulletin of the Chinese Ceramic Society, 2022, 41(9), 3138(in Chinese)
陈福玲, 温郁斌, 单俊鸿, 等. 硅酸盐通报, 2022, 41(9), 3138.
9 Zhou Z, Chen S X, Dai Z J, et al. Rock and Soil Mechanics, 2021, 42(11), 2997(in Chinese)
周哲, 陈善雄, 戴张俊, 等. 岩土力学, 2021, 42(11), 2997.
10 Tang C X, Yan F, Kong C Y, et al. Highway Engineering, 2024, 49(5), 116(in Chinese)
汤长西, 颜峰, 孔垂元, 等. 公路工程, 2024, 49(5), 116.
11 Tang C X, Yan F, Kong C Y, et al. Materials Reports, 2023, 37(S2), 278(in Chinese)
汤长西, 颜峰, 孔垂元, 等. 材料导报, 2023, 37(S2), 278.
12 Omar H M, Mekerta B, Jarno A, et al. European Journal of Environmental and Civil Engineering, 2021(11), 4952.
13 Shinsha H, Kumagai T. Soils and Foundations, 2018, 58(3), 678.
14 Tan E H, Zahran E M M, Tan S J. Transportation Geotechnics, 2022, 37, 100864.
15 Liao Y P, Lv Y, Huang G, et al. Construction and Building Materials, 2024, 416, 135190.
16 Liao Y S, Yao J X, Deng F, et al. Journal of Building Engineering, 2023, 80, 108075.
[1] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[2] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[3] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[4] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[5] 张宏飞, 张久鹏, 王帅, 陈子璇, 李哲, 裴建中. 沥青化学组分与宏观性能靶向关系研究综述与展望[J]. 材料导报, 2025, 39(4): 24010162-15.
[6] 刘朝晖, 盛佳豪, 柳力. 数据驱动下的沥青混合料材料组成设计方法[J]. 材料导报, 2025, 39(4): 24010230-9.
[7] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[8] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[9] 龙海洋, 王涛, 曹俊, 李艳辉, 马汝成, 李晓硕, 王博超, 刘志存, 方姣. LiSbO3掺杂对KNN基无铅压电陶瓷结构及压电性能的影响[J]. 材料导报, 2025, 39(23): 24110207-9.
[10] 孙丽, 蓝世航, 王超. 聚丙烯纤维增韧海砂珊瑚混凝土单轴压缩应力-应变本构关系及微观结构[J]. 材料导报, 2025, 39(23): 24070114-9.
[11] 王欣宇, 惠迎新, 徐新强, 李博文, 顾士周. 盐蚀作用对钢渣-SBS/胶粉复合改性沥青界面粘附特性的影响[J]. 材料导报, 2025, 39(23): 24060230-9.
[12] 王朝辉, 马健云, 张志强, 张莹, 陈绍昌. 碎石封层用树脂基改性乳化沥青调控制备及性能[J]. 材料导报, 2025, 39(23): 24110232-8.
[13] 乔立捷, 袁帅, 孟一凡, 邱质彬, 薛召露, 张振亚. 热障涂层的高温氧化及水氧腐蚀行为研究[J]. 材料导报, 2025, 39(22): 24100107-6.
[14] 鞠鹏, 雷宝锋, 姬语洋, 樊恒辉. 聚丙烯纤维对流态固化土流变及力学性能的影响[J]. 材料导报, 2025, 39(20): 24080171-8.
[15] 张萌, 窦智, 王泽平, 温勇. 碱激发矿渣/粉煤灰沙漠砂混凝土的基本力学性能及微观特性[J]. 材料导报, 2025, 39(18): 24040241-11.
[1] JIN Qinglin, WANG Yang, CAO Lei, SONG Qunling. Effect of Nitriding in Mushy Zone on the Nitrogen Content and Solidification Transformation of Cr10Mn9Ni0.7 Alloy[J]. Materials Reports, 2018, 32(4): 579 -583 .
[2] WANG Shengmin, ZHAO Xiaojun, HE Mingyi. Research Status and Development of Mechanical Plating[J]. Materials Reports, 2017, 31(5): 117 -122 .
[3] HE Yuandong, SUN Changzhen, MAO Weiguo, MAO Yiqi, ZHANG Honglong, CHEN Yanfei, PEI Yongmao, FANG Daining. Measurement of Transverse Piezoelectric Coefficients of Pb(Zr0.52Ti0.48)O3 Thin Films by a Mechano-electrical Multiphysics Coupling, Bulge Test Method[J]. Materials Reports, 2017, 31(15): 139 -144 .
[4] TAO Lei, ZHENG Yunwu,DI Mingwei, ZHANG Yanhua, ZHENG Zhifeng. Preparation of Porous Carbon Nanofiber from Liquid Phenolic Resin and Its Characterization[J]. Materials Reports, 2017, 31(10): 101 -106 .
[5] SU Lan, ZHANG Chubo, WANG Zhen, MI Zhenli. Finite Element Simulation of Electromagnetic Induction Heating in Hot Metal Gas Forming[J]. Materials Reports, 2017, 31(24): 182 -177 .
[6] QI Yaping, LUO Faliang, WANG Kezhi, SHEN Zhiyuan, WU Xuejian, WANG Diran. Effect of TMC-300 on the Performance of PLLA/PPC Alloy[J]. Materials Reports, 2018, 32(10): 1672 -1677 .
[7] DU Min, SONG Dian, XIE Ling, ZHOU Yuxiang, LI Desheng, ZHU Jixin. Electrospinning in Rechargeable Ion Batteries for High Efficient Energy Storage[J]. Materials Reports, 2018, 32(19): 3281 -3294 .
[8] LIU Xiao, XU Qian, LAI Guanghong, GUAN Jianan, XIA Chunlei, WANG Ziming, CUI Suping. Application Performances and Mechanism of Polycarboxylic Acid in Different Comb-bonded Structures in High-performance Concrete[J]. Materials Reports, 2018, 32(22): 4011 -4015 .
[9] ZHANG Di, YANG Di, XU Cui, ZHOU Riyu, LI Hao, LI Jing, WANG Peng. Study on Mechanism of Highly Effective Adsorption of Bisphenol F by Reduced Graphene Oxide[J]. Materials Reports, 2019, 33(6): 954 -959 .
[10] LIU Hongyin, YANG Hongyu, CHEN Mingfeng. Impact of Isocyanate Index on Flame Retardancy, Thermal Stability andCombustion Behaviors of Rigid Polyurethane Foam[J]. Materials Reports, 2019, 33(12): 2071 -2075 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed