Please wait a minute...
材料导报  2025, Vol. 39 Issue (21): 24090072-7    https://doi.org/10.11896/cldb.24090072
  无机非金属及其复合材料 |
不同类型粗骨料的图像三维重构及其形貌特征参数对比分析
吴俊清1, 罗柱1, 吴子洁1,*, 付志君1, 吴清华2, 周国梁2, 卢伟伟2, 杨嘉霖3
1 广东省建筑科学研究院集团股份有限公司,广州 510500
2 广东省水利水电科学研究院,广州 510500
3 中南大学土木工程学院,长沙 410075
Three-dimensional Reconstruction to Images of Different Types of Coarse Aggregates and Comparative Analysis of Their Morphology Characteristic Parameters
WU Junqing1, LUO Zhu1, WU Zijie1,*, FU Zhijun1, WU Qinghua2, ZHOU Guoliang2, LU Weiwei2, YANG Jialin3
1 Guangdong Provincial Academy of Building Research Group Co., Ltd., Guangzhou 510500, China
2 Guangdong Research Institute of Water Resources and Hydropower, Guangzhou 510500, China
3 School of Civil Engineering, Central South University, Changsha 410075, China
下载:  全 文 ( PDF ) ( 21275KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 粗骨料作为混凝土的主要组成部分,其形貌特征与混凝土性能具有很大相关性。为更准确地量化粗骨料形貌,分析不同类型粗骨料形貌特征差异,本工作结合三维激光扫描技术和数字图像处理技术,实现了碎石粗骨料、卵石粗骨料和煤矸石粗骨料的图像三维重构;对比了它们在宏观、细观和微观尺度上的形貌特征参数差异;并使用Pearson相关性分析方法衡量了各参数之间的线性关系强度。结果表明:三种类型粗骨料中,卵石粗骨料的整体形态最接近球体,碎石粗骨料表现出最显著的多棱角特征,煤矸石粗骨料的表面最粗糙;三种类型粗骨料的球度集中在0.6~0.8,碎石粗骨料、煤矸石粗骨料的棱角指数均在250以上,而卵石粗骨料的棱角指数大多在250以下,且卵石粗骨料最大的粗糙度指标小于煤矸石粗骨料最小的粗糙度指标;球度、棱角指数和粗糙度指标两两之间互不相关,可分别作为粗骨料整体形态、棱角性和表面粗糙程度的量化指标。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
吴俊清
罗柱
吴子洁
付志君
吴清华
周国梁
卢伟伟
杨嘉霖
关键词:  粗骨料  形貌特征  三维激光扫描  统计分析    
Abstract: Coarse aggregate is the main component of concrete, and its morphology characteristics are highly correlated with the properties of concrete. In order to quantify the morphology of coarse aggregates more accurately and analyze the differences in morphology characteristics of diffe-rent types of coarse aggregates, this work combined three-dimensional laser scanning technology and digital image processing technology to rea-lize the three-dimensional reconstruction to the images of crushed coarse aggregates, pebble coarse aggregates and coal gangue coarse aggregates. The differences of their morphology characteristic parameters at macro, meso and micro scales were compared, and the Pearson correlation analysis method was used to measure the linear relationship between these parameters. The results show that among the three types of coarse aggregates, the overall shape of pebble coarse aggregate is the closest to the sphere, the crushed coarse aggregate shows the most significant multi-angular characteristics, and the surface of coal gangue coarse aggregate is the roughest. The sphericity of the three types of coarse aggregate is concentrated between 0.6 and 0.8. The angularity index of crushed coarse aggregate and coal gangue coarse aggregate is above 250, while pebble coarse aggregate’s is mostly below 250, and the maximum roughness index of pebble coarse aggregate is smaller than the minimum roughness index of coal gangue coarse aggregate. The sphericity, angularity index and roughness index are not correlated with each other, which can be used as quantitative indicators for the overall shape, angularity and surface roughness of coarse aggregate, respectively.
Key words:  coarse aggregate    morphology characteristic    3D laser scanning    statistical analysis
出版日期:  2025-11-10      发布日期:  2025-11-10
ZTFLH:  TU521  
  TV42  
基金资助: 广东省普通高校青年创新人才类项目(2024KQNCX236)
通讯作者:  *吴子洁,高级工程师,广东省水利水电行业协会入库专家,广东省建筑科学研究院集团股份有限公司副总经济师。目前主要从事水利工程检测技术的创新研发与应用。13113969496@163.com   
作者简介:  吴俊清,目前主要研究领域为骨料形貌特征分析和新拌自密实混凝土数值模拟。
引用本文:    
吴俊清, 罗柱, 吴子洁, 付志君, 吴清华, 周国梁, 卢伟伟, 杨嘉霖. 不同类型粗骨料的图像三维重构及其形貌特征参数对比分析[J]. 材料导报, 2025, 39(21): 24090072-7.
WU Junqing, LUO Zhu, WU Zijie, FU Zhijun, WU Qinghua, ZHOU Guoliang, LU Weiwei, YANG Jialin. Three-dimensional Reconstruction to Images of Different Types of Coarse Aggregates and Comparative Analysis of Their Morphology Characteristic Parameters. Materials Reports, 2025, 39(21): 24090072-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090072  或          https://www.mater-rep.com/CN/Y2025/V39/I21/24090072
1 Li C Z, Zhou X B, Wei S G, et al. Materials Reports, 2024, 38(17), 23030064(in Chinese).
李长志, 周新斌, 魏世恭, 等. 材料导报, 2024, 38(17), 23030064.
2 Li L, Long G C, Xie Y J, et al. Journal of Railway Science and Engineering, 2022(3), 19(in Chinese).
李良, 龙广成, 谢友均, 等. 铁道科学与工程学报, 2022(3), 19.
3 Zhang X Q, Ma K L, Long G C, et al. Materials Reports, 2024, 38(2), 114(in Chinese).
张雪芹, 马昆林, 龙广成, 等. 材料导报, 2024, 38(2), 114.
4 Xiao B L, Yang Z Q, Chen D X, et al. Journal of Tianjin University (Science and Technology), 2019, 52(5), 545(in Chinese).
肖柏林, 杨志强, 陈得信, 等. 天津大学学报(自然科学与工程技术版 ), 2019, 52(5), 545.
5 Zhao Y, Duan Y H, Zhu L L, et al. Construction and Building Materials, 2021, 286, 122940.
6 Deng P, Xu K, Guo S C. Journal of Building Engineering, 2023, 63, 105408.
7 Jiang W Q, Liu Q F. Journal of the Chinese Ceramic Society, 2020, 48(2), 258(in Chinese).
姜文镪, 刘清风. 硅酸盐学报, 2020, 48(2), 258.
8 General Administration of Quality Supervision, Inspection and Quarantine of the People’s Republic of China. Pebble and crushed stone for construction: GB/T 14685-2022. Standards Press of China, China, 2022 (in Chinese)
中华人民共和国国家质量监督检验检疫总局. 建设用卵石、碎石: GB/T 14685-2022. 中国标准出版社, 2022.
9 Ding Z, Li P L, Wu X, et al. Construction and Building Materials, 2020, 247, 118608.
10 Ma K L, Huang X Y, Shen J T, et al. Journal of Building Engineering, 2021, 44, 103292.
11 Zhao L H, Zhang S H, Huang D L, et al. Construction and Building Materials, 2020, 262, 119986.
12 Li J M, Huang Y L, Pu H, et al. Powder Technology, 2021, 384, 112.
13 Guo M H. Shape Characteristics analysis of coarse aggregate based on image processing technology and its application. Master’s Thesis, Yantai University, China, 2024(in Chinese).
郭美虹. 基于图像处理技术的粗骨料形状特性分析及其应用. 硕士学位论文, 烟台大学, 2024.
14 Liu Y, Gong F Y, You Z P, et al. Journal of Materials in Civil Engineering, 2018, 30(1), 04017248.
15 Song J B, Zhou X L, Jiang R Q. Buildings, 2023, 13(4), 1029.
16 Jiang W, Xie Y J, Ma K L, et al. Construction and Building Materials, 2023, 403, 133132.
17 Li W X, Wang D Y, Chen B, et al. Buildings, 2022, 12(3), 293.
18 Bai G L, Liu H Q, Wang J W, et al. China Civil Engineering Journal, 2023, 56(11), 27(in Chinese).
白国良, 刘瀚卿, 王建文, 等. 土木工程学报, 2023, 56(11), 27.
19 Liu H Q, Bai G L, Zhu K F, et al. Journal of Building Materials, 2023, 26(4), 346(in Chinese).
刘瀚卿, 白国良, 朱可凡, 等. 建筑材料学报, 2023, 26(4), 346.
20 Liu H Q, Bai G L, Wang J W, et al. Journal of Building Structures, 2023, 44(7), 236(in Chinese).
刘瀚卿, 白国良, 王建文, 等. 建筑结构学报, 2023, 44(7), 236.
21 Ge J Y, Zhu H G, Li Z H, et al. Materials Reports, 2021, 35(S2), 218(in Chinese).
葛洁雅, 朱红光, 李宗徽, 等. 材料导报, 2021, 35(S2), 218.
22 Wang Q H, Li Z, Zhou M, et al. Journal of Building Structures, 2020, 41(12), 64(in Chinese).
王庆贺, 李喆, 周梅, 等. 建筑结构学报, 2020, 41(12), 64.
23 Zhang T, Wen Q, Gao S, et al. Construction and Building Materials, 2023, 400, 132646.
24 Lin F, Zou L, Zhang C. Computer Simulation, 2023, 40(9), 454(in Chinese).
林菲, 邹玲, 张聪. 计算机仿真, 2023, 40(9), 454.
25 Greenacre M, Groenen P J F, Hastie T, et al. Nature Reviews Methods Primers, 2022, 2(1), 100.
26 Fang K, Zhang J F, Tang H M, et al. Engineering Geology, 2023, 322, 107170.
27 Bhattacharya S, Subedi S, Lee S J, et al. Transportation Geotechnics, 2020, 23, 100344.
28 Pouranian M R, Shishehbor M, Haddock J E. Powder Technology, 2020, 363, 369.
29 Rao C, Tutumluer E, Kim I T. Transportation Research Record, 2002, 1787(1), 117.
30 Yu H N, Zhang C, Qian G P, et al. Construction and Building Materials, 2023, 388, 131299.
31 Gong F Y, Liu Y, You Z P, et al. Construction and Building Materials, 2021, 273, 121989.
32 Roy N, Kuna K K. International Journal of Pavement Engineering, 2023, 24(2), 2099854.
33 Latham J P, Munjiza A, Garcia X, et al. Minerals Engineering, 2008, 21(11), 797.
34 Zhou M, Dou Y W, Zhang Y Z, et al. Construction and Building Materials, 2019, 220, 386.
35 Yu L L. Study on mechanical properties and durability of FRP-confined coal gangue concrete in goaf. Ph. D. Thesis, China University of Mining and Technology, China, 2023(in Chinese).
郁林利. 采空区FRP约束煤矸石混凝土力学性能与耐久性研究. 博士学位论文, 中国矿业大学, 2023.
36 Liu H X. Recognition and application of concrete coarse aggregate shape based on image processing technolog. Master’s Thesis, Chongqing University, China, 2021(in Chinese).
刘和鑫. 基于图像处理技术的混凝土粗骨料形貌识别与应用. 硕士学位论文, 重庆大学, 2021.
37 Wu S Y, Wu Q L, Shan J S, et al. Construction and Building Materials, 2023, 367, 130219.
38 Bai G L, Liu H Q, Liu H, et al. Journal of Building Structures, 2023, 44(10), 243(in Chinese).
白国良, 刘瀚卿, 刘辉, 等. 建筑结构学报, 2023, 44(10), 243.
39 Barrett P J. Sedimentology, 1980, 27(3), 291.
[1] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[2] 王健, 张永, 高津. 风电机组叶片涂层沙蚀效应的风洞试验研究[J]. 材料导报, 2025, 39(9): 23120009-5.
[3] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[4] 李良顺, 李化建, 杨志强, 石贺男, 董昊良. 基于粗骨料的混凝土弹性模量控制方法及预测模型[J]. 材料导报, 2025, 39(16): 24070071-15.
[5] 许开成, 王文鹏, 张立卿. 不同来源粗骨料混合再生混凝土抗压强度及其预测模型建立[J]. 材料导报, 2025, 39(12): 23110068-9.
[6] 周宏元, 母崇元, 王小娟, 李润琳, 曹万林. 地聚物再生混凝土抗压强度的离散性分析[J]. 材料导报, 2025, 39(1): 23100132-8.
[7] 董舵, 肖逸, 邢佳颖, 原奇鑫. 煤衍生多孔碳改性调控及其在储能领域应用[J]. 材料导报, 2024, 38(24): 23110053-16.
[8] 张雪芹, 马昆林, 龙广成, 曾晓辉, 唐卓, 谢友均, 刘宝举. 粗骨料形态特征表征参数及其与混凝土性能关系的研究进展[J]. 材料导报, 2024, 38(2): 22060263-12.
[9] 李长志, 周新斌, 魏世恭, 马昆林, 于连山, 邹卫东. 粗骨料形态特征差异及其与堆积空隙率关系的研究[J]. 材料导报, 2024, 38(17): 23030064-9.
[10] 马昆林, 刘建, 申景涛, 胡明文, 王晓杰, 龙广成, 曾晓辉. 砖混再生粗骨料及其在混凝土中的研究与应用进展[J]. 材料导报, 2023, 37(18): 22010215-12.
[11] 林一柯, 何廷树, 达永琪. 自磨改性对再生粗骨料及再生混凝土性能的影响[J]. 材料导报, 2023, 37(16): 22020144-6.
[12] 杨利香, 宋兴福, 陆美荣, 夏月辉. 基于再生粗骨料裹浆厚度的含砂透水混凝土配合比设计方法[J]. 材料导报, 2022, 36(4): 21020037-7.
[13] 潘诗婷, 李凯, 张超慧, 史才军. 粗骨料形状对混凝土氯离子扩散性能影响的数值模拟研究[J]. 材料导报, 2022, 36(10): 21030145-9.
[14] 谢登敏, 钱春香, 张霄. 微生物矿化沉积技术强化核壳结构再生粗骨料[J]. 材料导报, 2021, 35(1): 1030-1035.
[15] 田中男, 张争奇, 李乃强, 徐玉峰, 唐亨山, 桂增俭. 工业废渣地聚合物注浆材料组分及性能增强的研究进展[J]. 材料导报, 2020, 34(19): 19034-19042.
[1] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[2] WU Wei, CHEN Shiying, ZONG Mengjingzi. Dielectric Properties and Thermal Stability of Nano-Al2O3/Polyether Sulfone-epoxy Resin Composites[J]. Materials Reports, 2017, 31(20): 21 -24 .
[3] MO Peicheng, WU Yi, YU Wenlin, WANG Jilin, ZOU Zhengguang, ZHONG Shenglin, WANG Peng. In Situ Synthesis of PcBN Composites by cBN-Ti-Al-Si and Their Mechanical Property[J]. Materials Reports, 2018, 32(14): 2355 -2359 .
[4] HU Yaoqiang, CHEN Fajin, LIU Haining, ZHANG Huifang, WU Zhijian, YE Xiushen. Preparation of Poly(N-isopropylacrylamide) Hydrogel and Its Thermally Induced Aggregation Behavior[J]. Materials Reports, 2018, 32(14): 2491 -2496 .
[5] SONG Gang, CHI Jiayu, YU Jingwei, LIU Liming. Corrosion Behavior of Mg-steel Laser-TIG Hybrid Welding Joint[J]. Materials Reports, 2018, 32(16): 2773 -2777 .
[6] HUANG Hui, HAN Jianfeng, WANG Yishun, XIA Yang, ZHANG Jun, GAN Yongping, LIANG Chu, ZHANG Wenkui. Supercritical CO2 Assisting Cladding of LiMnPO4 on the Surface of Li[Li0.2-Mn0.54Co0.13Ni0.13]O2 and Its Electrochemical Properties[J]. Materials Reports, 2018, 32(23): 4072 -4078 .
[7] WANG Zhonghui, XIN Yong. Molecular Dynamics Simulation on the Relationship of Oxygen Diffusion and Polymer Chains Activity[J]. Materials Reports, 2019, 33(8): 1293 -1297 .
[8] CHANG Jingjing. Spin Coating Epitaxial Films[J]. Materials Reports, 2019, 33(12): 1919 -1920 .
[9] ZHUANG Xiaodong, LI Rongxing, YU Xiaohua, XIE Gang, HE Xiaocai, XU Qingxin. Preparation of Lithium Titanate Electrode Materials by Solid Phase Method[J]. Materials Reports, 2019, 33(16): 2654 -2659 .
[10] BIAN Guixue, CHEN Yueliang, ZHANG Yong, WANG Andong, WANG Zhefu. Equivalent Conversion Coefficient of Aluminum/Titanium Alloy Between Acidic NaCl Solution with Different Concentration and Water Based on Galvanic Corrosion Simulation[J]. Materials Reports, 2019, 33(16): 2746 -2752 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed