Please wait a minute...
材料导报  2025, Vol. 39 Issue (20): 24070169-8    https://doi.org/10.11896/cldb.24070169
  高分子与聚合物基复合材料 |
陶质文物常用有机粘接材料的耐老化性能分析及评价
施佩1, 贾伟明1, 陈乐1, 甄刚2, 马涛1,2, 张鑫3, 王芬1, 朱建锋1, 张彪1,*, 李豆豆1
1 陕西科技大学材料科学与工程学院,文物保护科学与技术学院,地下文物保护材料与技术教育部重点实验室,西安710021
2 陕西省文物保护研究院,西安710075
3 乾陵博物馆,陕西 咸阳713300
Analysis and Evaluation of Aging Resistance of Organic Bonding Materials Commonly Used in Pottery Cultural Relics
SHI Pei1, JIA Weiming1, CHEN Le1, ZHEN Gang2, MA Tao1,2, ZHANG Xin3, WANG Fen1, ZHU Jianfeng1, ZHANG Biao1,*, LI Doudou1
1 Key Laboratory of Materials and Technology for Unearthed Cultural Heritage Conservation, Ministry of Education, School of Conservation Science and Technology for Cultural Heritage, School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi’an 710021, China
2 Shaanxi Institute of Cultural Relics Protection, Xi’an 710075, China
3 Qianling Mausoleum, Xianyang 713300, Shaanxi, China
下载:  全 文 ( PDF ) ( 53333KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 陶质文物是我国文化遗产的重要组成部分,其历史、艺术、科学价值丰富。出土陶质文物多残断,需要使用粘接性能优异的材料对其进行修复保护。本研究以秦东陵土为原料模拟制备陶质文物,以反应型树脂(环氧树脂)、水溶型合成树脂(Primal SF 016)和溶剂型合成树脂(B72)对样品进行粘接,分别在干热、湿热、紫外线辐照和低温等条件下对其进行老化,分析老化前后样品的微观形貌、化学键、力学性能等,从而对三种材料的耐老化性能进行综合评价。结果表明:环氧树脂综合性能最佳,具有良好的抗热、抗湿和抗冻性能,但耐紫外光照射性能差,适用于室内环境中的陶质文物修复;Primal SF 016耐热性能良好,但容易受高湿、低温和紫外光照射的影响,适用于室内干燥环境;B72的性能与Primal SF 016相近,但综合耐老化性能更优,适用于室内陶质文物修复。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
施佩
贾伟明
陈乐
甄刚
马涛
张鑫
王芬
朱建锋
张彪
李豆豆
关键词:  陶质文物  环氧树脂  耐老化性能    
Abstract: Pottery cultural relics are an important part of Chinese cultural heritage, possessing rich historical, artistic, and scientific value. Many excavated pottery cultural relics are often found broken and require materials with excellent adhesive properties for their restoration and conservation. This study used soil from the Qin Dongling as a raw material to simulate the preparation of ceramic cultural relics. The samples were bonded using reactive resin (epoxy resin), water-soluble synthetic resin (Primal SF 016), and solvent-based synthetic resin (B72). The samples were then subjected to aging under conditions of dry heat, humid heat, ultraviolet radiation, and low temperature. The microstructure, chemical bonds, and mechanical properties of the samples were tested before and after aging to comprehensively evaluate the aging resistance of the three materials. The results show that epoxy resin has the best comprehensive performance, good heat resistance, moisture resistance and frost resistance, but poor ultraviolet radiation resistance, making it suitable for the restoration of pottery cultural relics in indoor environments. Primal SF 016 has good heat resistance but is easily affected by high humidity, low temperature, and ultraviolet radiation, making it suitable for dry indoor environments. B72 has similar properties to Primal SF 016 but with better overall aging resistance, making it suitable for the restoration of indoor pottery cultural relics.
Key words:  pottery cultural relic    epoxy resin    aging resistance
发布日期:  2025-10-27
ZTFLH:  K876.3  
  TQ437  
基金资助: 国家自然科学基金(52102108;52102026);陕西省教育厅重点科研计划(22JY009;22JY010);陕西省外国专家服务计划项目(2024WZ-YBXM-17);硅酸盐质文物保护教育部重点实验室(上海大学)资助项目(SCRC2024KF10YQ)
通讯作者:  *张彪,博士,副教授,硕士研究生导师。zhangbiao@sust.edu.cn   
作者简介:  施佩,博士,副教授,硕士研究生导师。主要从事多元信息提取技术及应用、古陶瓷数据库构建与优化、可移动文物保护等方面的研究。
引用本文:    
施佩, 贾伟明, 陈乐, 甄刚, 马涛, 张鑫, 王芬, 朱建锋, 张彪, 李豆豆. 陶质文物常用有机粘接材料的耐老化性能分析及评价[J]. 材料导报, 2025, 39(20): 24070169-8.
SHI Pei, JIA Weiming, CHEN Le, ZHEN Gang, MA Tao, ZHANG Xin, WANG Fen, ZHU Jianfeng, ZHANG Biao, LI Doudou. Analysis and Evaluation of Aging Resistance of Organic Bonding Materials Commonly Used in Pottery Cultural Relics. Materials Reports, 2025, 39(20): 24070169-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24070169  或          https://www.mater-rep.com/CN/Y2025/V39/I20/24070169
1 Zhao J, Luo H J, Wang L Q, et al. Chinese Science: Technical Science, 2014, 44(4), 398 (in Chinese).
赵静, 罗宏杰, 王丽琴, 等. 中国科学:技术科学, 2014, 44(4), 398.
2 Li X X, Wang L Q, Li W D, et al. Fine Chemicals, 2011, 28(10), 945 (in Chinese).
李晓溪, 王丽琴, 李伟东, 等. 精细化工, 2011, 28(10), 945.
3 Xie L N, Li Y H, Wang S L, et al. Journal of Shaanxi Normal University (Natural Science Edition), 2019, 47(4), 89 (in Chinese).
谢丽娜, 李玉虎, 王盛霖, 等. 陕西师范大学学报(自然科学版), 2019, 47(4), 89.
4 Zhou T, Rong B. Cultural Relics Protection and Archaeological Science, 2008, 20(S1), 68 (in Chinese).
周铁, 容波. 文物保护与考古科学, 2008, 20(S1), 68.
5 Rong B, Lan D S. Wen Bo, 2003(2), 73 (in Chinese).
容波, 兰德省. 文博, 2003(2), 73.
6 Wang H Z, Song D S, Cheng Y B, et al. Wen Bo, 2009(6), 244 (in Chinese).
王惠贞, 宋迪生, 程玉冰, 等. 文博, 2009(6), 244.
7 Wei L. Research on the protection of Han Dynasty painted pottery in Yulin area. Master’s Thesis, Northwest University, China, 2012 (in Chinese).
魏璐. 榆林地区馆藏汉代彩绘陶器的保护研究. 硕士学位论文, 西北大学, 2012.
8 Lan D S. Research on Heritages and Preservation, 2019, 4(1), 117 (in Chinese).
兰德省. 遗产与保护研究, 2019, 4(1), 117.
9 Zhao H Q. Cultural Relics Protection and Archaeological Science, 2020, 32(3), 38 (in Chinese).
赵慧群. 文物保护与考古科学, 2020, 32(3), 38.
10 Zhou L K, Wang C, Yang D Y. New research on cultural relics protection (2), Beijing Cultural Relics Publishing House, China, 2010, pp. 174 (in Chinese).
周理坤, 王春, 杨大用. 文物保护研究新论(二), 北京文物出版社, 2010, pp. 174.
11 Xie Y M, Pan R, Peng B. Engineering and Construction, 2009, 23(1), 55 (in Chinese).
谢业明, 潘荣, 彭勃. 工程与建设, 2009, 23 (1), 55.
12 Wang S J, Fang S Q, Zhang B J. Cultural Relics Protection and Archaeological Science, 2017, 29(2), 15.
王思嘉, 方世强, 张秉坚. 文物保护与考古科学, 2017, 29(2), 15.
13 Cheng Q, Wang Y J, Wen J H, et al. Adhesion, 2022, 49(3), 6 (in Chinese).
程倩, 王艺佳, 温建华, 等. 粘接, 2022, 49(3), 6.
14 Zhu H B, Guo Z F, Han B, et al. Journal of Xi’an University of Architecture and Technology (Natural Science Edition), 2023, 55(4), 578 (in Chinese).
朱红兵, 郭正发, 韩蓓, 等. 西安建筑科技大学学报(自然科学版), 2023, 55(4), 578.
15 Guo Y J, Yan H, Xiao F. Journal of Tsinghua University (Natural Science Edition), 2000(7), 1 (in Chinese).
郭永基, 颜寒, 肖飞. 清华大学学报(自然科学版), 2000(7), 1.
16 Gong X, Han X N, Chen K L. Cultural Relic Protection and Archaeological Science, 2021, 33(3), 108 (in Chinese).
龚欣, 韩向娜, 陈坤龙. 文物保护与考古科学, 2021, 33(3), 108.
17 Mehrez E N, Sami U, Wageh S, et al. Journal of Rare Earth (English Edition), 2023, 41(3), 397.
18 Gong X, Han X N, Chen K L. Spectroscopy and Spectral Analysis, 2023, 43(7), 2181 (in Chinese).
龚欣, 韩向娜, 陈坤龙. 光谱学与光谱分析, 2023, 43(7), 2181.
19 Wang L. Study on UV aging mechanism and aging resistance modification of stone cultural relics protection materials. Master’s Thesis, Beijing University of Chemical Technology, China, 2023 (in Chinese).
王莉. 石质文物保护材料紫外光老化机理与耐老化改性研究. 硕士学位论文, 北京化工大学, 2023.
20 Yang J L, Zhou S L. In: Proceedings of the 13th National Symposium on Archaeology and Conservation Chemistry. Bozhou, China, 2014, pp. 342 (in Chinese).
杨景龙, 周双林. 全国第十三届考古与文物保护化学学术研讨会论文集. 亳州, 2014, pp. 342.
21 Pintus V, Schreiner M. Analytical and Bioanalytical Chemistry, 2011, 399, 2961.
22 Lan D S. Cultural Relic Protection and Archaeological Science, 2019, 31(5), 49 (in Chinese).
兰德省. 文物保护与考古科学, 2019, 31(5), 49.
23 Yang Z Z, Yu H. Shanghai Arts and Crafts, 2018(4), 78 (in Chinese).
杨植震, 俞蕙. 上海工艺美术, 2018(4), 78.
[1] 胡文龙, 杨露露, 苗磊, 黄频波, 张树正, 赵志博, 仓钰, 杨斌. 基于金属多酚网络的碳纤维表面改性及其增强环氧树脂复合材料界面性能[J]. 材料导报, 2025, 39(17): 24070023-6.
[2] 宋伟, 范吉轩, 李琳, 冯景涛, 宋文宏, 彭修峰, 苟萌萌, 朱立鹏. 联苯芳香酯型液晶环氧树脂制备及性能研究[J]. 材料导报, 2025, 39(17): 24070137-6.
[3] 段忆盟, 杨昊, 王鑫, 黄骏, 赵思瑞, 周福升, 高超. 基于Johnson-Cook模型的盆式绝缘子环氧树脂材料裂纹缺陷扩展行为研究[J]. 材料导报, 2025, 39(12): 24050030-7.
[4] 周涛, 张笑晴, 陈家荣, 杨晨艺, 雷彩红. 厚朴酚基形状记忆环氧树脂的制备及性能研究[J]. 材料导报, 2025, 39(11): 24020002-7.
[5] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[6] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[7] 何丽红, 马悦帆, 杨克, 徐心硕, 李青林. 水性有机硅改性环氧树脂的制备与性能[J]. 材料导报, 2024, 38(3): 22050109-5.
[8] 周铭钰, 刘曙光, 吴超凡, 刘军, 张恒龙, 张帅, 李启石. 基于水性环氧乳化沥青的超薄磨耗层级配设计及性能对比研究[J]. 材料导报, 2024, 38(24): 23110085-8.
[9] 刘圣洁, 曹旭, 张钰林, 傅永腾, 焦晓东. 水性环氧树脂复合改性乳化沥青固化行为及性能研究[J]. 材料导报, 2024, 38(24): 23090085-7.
[10] 颜蜀雋, 谭雅莉, 庞忠荣, 万鹏颖, 齐福刚. 六方氮化硼负载纳米氧化铝复合填料的制备及改性环氧涂层的防腐性能研究[J]. 材料导报, 2024, 38(20): 22110089-6.
[11] 吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫. 甲基取代二芳基氧化膦阻燃改性环氧树脂的研究[J]. 材料导报, 2024, 38(16): 23040213-10.
[12] 李嘉, 肖鹏, 范思源, 周壹伍. 基于表面能理论的粘结剂-UHPC粘结失效模式分析[J]. 材料导报, 2024, 38(14): 23030069-7.
[13] 于天夫, 李祥, 杨薛明, 胡宗杰, 季畅. 利用聚多巴胺硅烷双重改性氮化硼提高环氧树脂复合材料热物性[J]. 材料导报, 2024, 38(11): 22070092-6.
[14] 朱刚建, 李文晓. 核壳颗粒增韧改性环氧树脂基体研究评述[J]. 材料导报, 2024, 38(10): 22120066-9.
[15] 赵明明, 王继辉, 倪爱清, 陈俊磊, 王昌增, 邬志超. 阻燃改性环氧树脂的抗紫外老化研究[J]. 材料导报, 2024, 38(1): 22080234-7.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed