Please wait a minute...
材料导报  2025, Vol. 39 Issue (2): 23070123-8    https://doi.org/10.11896/cldb.23070123
  无机非金属及其复合材料 |
硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究
丁亚荣1, 李灿华1,2,*, 章蓝月1, 李家茂3, 何川1, 李明晖1, 朱伟长3, 韦书贤1
1 安徽工业大学冶金工程学院,安徽 马鞍山 243002
2 安徽工业大学智能装备技术研究院,安徽 马鞍山 243002
3 安徽工业大学材料科学与工程学院,安徽 马鞍山 243002
Study on Cu(Ⅱ) Removal Properties of Sulfide Nano Zero-valent Iron Composites
DING Yarong1, LI Canhua1,2,*, ZHANG Lanyue1, LI Jiamao3, HE Chuan1, LI Minghui1, ZHU Weichang3, WEI Shuxian1
1 School of Metallurgical Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui, China
2 Research Institute of Intelligent Equipment Technology of AHUT, Ma'anshan 243002, Anhui, China
3 School of Materials Science and Engineering, Anhui University of Technology, Ma'anshan 243002, Anhui, China
下载:  全 文 ( PDF ) ( 9957KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 硫化纳米零价铁(S-nZVI)及其复合材料以去除重金属的优异性能而著称,但较高的制备成本极大限制了S-nZVI的发展及应用。本工作以Na2S2O4为单一还原剂,通过流变相反应制备S-nZVI@Ma纳米复合材料,采用SEM、TEM、EDS、XPS、XRD、FTIR、VSM等手段对S-nZVI@Ma进行了表征,研究了S-nZVI@Ma对模拟废水中Cu(Ⅱ)的去除效果。结果表明,S-nZVI@Ma能够高效地去除模拟废液中99%以上的Cu(Ⅱ),并可利用外置磁铁将其从模拟废液中分离出来。经过五次重复利用后,S-nZVI@Ma对Cu(Ⅱ)的去除率仍保持在75%以上,表明该材料具有良好的磁回收利用性能。Cu(Ⅱ)的去除过程符合准二级动力学模型和Langmuir等温吸附模型,最大容量(qmax)为71.43 mg·g-1,热力学研究表明了去除过程的自发性和吸热性。利用FESEM-EDS、XRD、XPS、FTIR等手段对反应物进行表征,从电子转移的角度讨论了反应机理。以上研究可为S-nZVI的实际应用提供参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁亚荣
李灿华
章蓝月
李家茂
何川
李明晖
朱伟长
韦书贤
关键词:  硫化纳米零价铁  连二亚硫酸钠  含铜废水  吸附    
Abstract: Sulfide nano zero-valent iron (S-nZVI) and its composites are famous for their excellent performance in removing heavy metals, but the high preparation cost greatly limits the development and application of S-nZVI. In this work, S-nZVI@Ma nanocomposites were prepared by fluidizing phase reaction using Na2S2O4 as a single reducing agent. S-nZVI@Ma was characterized by means of SEM, TEM, EDS, XPS, XRD, FTIR and VSM. The removal effect of S-nZVI@Ma on Cu(Ⅱ) from simulated wastewater was studied. The results show that S-nZVI@Ma can efficiently remove more than 99% Cu(Ⅱ) from the simulated waste liquid and can be separated from the simulated waste liquid by external magnet. After 5 times of reuse, the removal rate of Cu(Ⅱ) by S-nZVI@Ma remained above 75%, indicating that the material has good magnetic recycling performance. The removal process of Cu(Ⅱ) conforms to the quasi-second-order kinetic model and the Langmuir isothermal adsorption model, and the maximum capacity (qmax) is 71.43 mg·g-1. Thermodynamic studies show that the removal process is spontaneous and endothermic. The reactants were characterized by FESEM-EDS, XRD, XPS and FTIR, and the reaction mechanism was discussed from the point of view of electron transfer. The above research can provide reference for the practical application of S-nZVI.
Key words:  S-nZVI    sodium dithionite    Cu(Ⅱ) wastewater    adsorption
出版日期:  2025-01-25      发布日期:  2025-01-21
ZTFLH:  X52  
基金资助: 安徽省中央引导地方科技发展专项(202107d06050012);安徽高校研究生科学研究项目(YJS202110333)
通讯作者:  *李灿华,安徽工业大学冶金工程学院教授、硕士研究生导师。目前主要从事微纳米材料及新污染物治理方面的研究。licanhua1979@163.com   
作者简介:  丁亚荣,安徽工业大学冶金工程学院硕士研究生,在李灿华教授的指导下进行研究。目前主要研究领域为生态材料绿色制备。
引用本文:    
丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
DING Yarong, LI Canhua, ZHANG Lanyue, LI Jiamao, HE Chuan, LI Minghui, ZHU Weichang, WEI Shuxian. Study on Cu(Ⅱ) Removal Properties of Sulfide Nano Zero-valent Iron Composites. Materials Reports, 2025, 39(2): 23070123-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.23070123  或          https://www.mater-rep.com/CN/Y2025/V39/I2/23070123
1 Li X, Wu Y Q, Zhang G Q, et al. Environmental Science & Technology, 2018, 41(8), 34 (in Chinese).
李想, 吴雅琴, 张高旗, 等.环境科学与技术, 2018, 41(8), 34.
2 Li S L, Wang W, Yan W L, et al. Environmental Science, 2014, 16(3), 524.
3 Xiao L P, Li J X, Wang T, et al. Environmental Science & Technology, 2020, 43(7), 94 (in Chinese).
肖利萍, 李嘉欣, 王涛, 等.环境科学与技术, 2020, 43(7), 94.
4 Hou S N, Zheng N, Tang L, et al. Environment International, 2019, 128, 430.
5 Shrestha R, Ban S, Devkota S, et al. Journal of Environmental Chemical Engineering, 2021, 9(4), 105688.
6 He W, Cao J Z, Guo F Y, et al. Chemical Engineering Journal, 2023, 468, 143747.
7 Rudnicki P, Hubicki Z, Kołodyńska D. Chemical Engineering Journal, 2014, 252, 362.
8 Li T G, Duan Z Y, Qin R G, et al. Chemosphere, 2020, 250, 126225.
9 Qin Q D, Zhang Y F, Zhang H M, et al. Journal of Water Process Engineering, 2022, 48, 102861.
10 Abidli A, Huang Y F, Ben Rejeb Z, et al. Chemosphere, 2022, 292, 133102.
11 Li S L, Wang W, Yan W L, et al. Environmental Science Processes & Impacts, 2014, 16, 524.
12 Dada A O, Adekola F A, Odebunmi E O, et al. MethodsX, 2020, 7, 100976.
13 Yang S M, Liu A R, Liu J, et al. Acta Chimica Sinica, 2022, 80(11), 1536 (in Chinese).
杨思明, 刘爱荣, 刘静, 等. 化学学报, 2022, 80(11), 1536.
14 Shi L Q, Deng Q, Guo L, et al. Separation and Purification Technology, 2023, 314, 123483.
15 Li W B, Fu F L, Ding Z C, et al. Journal of the Taiwan Institute of Chemical Engineers, 2018, 85, 155.
16 Lv X F, Prastistho W, Yang Q, et al. Applied Organometallic Chemistry, 2020, 34(5), e5592.
17 Tan L, Lu S Y, Fang Z Q, et al. Applied Catalysis B: Environmental, 2017, 200, 200.
18 Sun Q, Feitz A J, Guan J, et al. Nano, 2008, 3(5), 341.
19 Ma B, Yao J, Knudsen T Š, et al. Journal of Hazardous Materials, 2023, 457, 131797.
20 Lee M E, Jeon E, Tsang D C W, et al. Journal of Hazardous Materials, 2018, 354, 91.
21 Ma X M, He D, Jones A M, et al. Journal of Hazardous Materials, 2016, 303, 101.
22 Sines I T, Vaughn II D D, Misra R, et al. Journal of Solid State Chemistry, 2012, 196, 17.
23 Zhou A J, Liu H Y, Varrone C, et al. Chemical Engineering Journal, 2020, 400, 125885.
24 Dai L, Meng K, Zhao W F, et al. Nanomaterials, 2022, 12(9), 1591.
25 Ibrahim H M, Awad M, Al-Farraj A S, et al. Nanomaterials, 2020, 10(2), 192.
26 Liu D Q, Liu Z R, Wang C F, et al. Journal of Radioanalytical and Nuclear Chemistry, 2016, 310(3), 1131.
27 Arshadi M, Soleymanzadeh M, Salvacion J W L, et al. Journal of Colloid and Interface Science, 2014, 426, 241.
28 Zhou C D, Sui M H, Du S H. Journal of Hazardous Materials, 2023, 458, 131968.
29 Pang H W, Wang S F, Wang X X, et al. Scientia Sinica(Chimica), 2022, 52(4), 608 (in Chinese).
庞宏伟, 王苏菲, 王祥学, 等. 中国科学:化学, 2022, 52(4), 608.
30 Yousefinia S, Sohrabi M R, Motiee F, et al. Materials Chemistry and Physics, 2023, 296, 127206.
31 Zhang X D, Shi D Y, Li X, et al. Chemosphere, 2019, 224, 390.
32 Gu T H, Shi M J, Hua Y L, et al. Acta Chimica Sinica, 2017, 75(10), 991 (in Chinese).
顾天航, 石君明, 滑熠龙, 等. 化学学报, 2017, 75(10), 991.
33 Hua Y L, Wang W, Hu N, et al. Nano, 2021, 8(3), 666.
34 Menezes O, Yu Y, Root R A, et al. Chemosphere, 2021, 285, 131409.
35 Carrera Espinoza M J, Lin K, Weng M, et al. European Polymer Journal, 2021, 153, 110504.
36 Hu J, Chen G H, Lo I M C. Water Research, 2005, 39(18), 4528.
37 Zhang K L, Yang Y L, Xu M, et al. Water Science and Technology, 2022, 85(1), 354.
38 He Y T, Niu H B, Zhang Z N, et al. Chemical Journal of Chinese Universities, 2023, 44(2), 152 (in Chinese).
贺玉婷, 牛慧斌, 张兆年, 等. 高等学校化学学报, 2023, 44(2), 152.
[1] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[2] 崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J]. 材料导报, 2025, 39(1): 23110102-9.
[3] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[4] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[5] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[6] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[7] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[8] 李佳敏, 常麟晖, 陈步明, 黄惠, 郭忠诚. 氯化物体系单槽双室电积锰工艺研究[J]. 材料导报, 2024, 38(3): 22010135-6.
[9] 陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
[10] 李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
[11] 陈尚龙, 刘恩岐, 赵节昌, 陈安徽, 刘辉, 苗敬芝. 羧基化柚子皮吸附Cd2+的性能与机制[J]. 材料导报, 2024, 38(20): 23060114-7.
[12] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[13] 陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
[14] 贾震震, 李一鸣, 郑智宏, 张静云, 程璇, 郑煜铭, 邵再东. 柔性高比表静电纺碳纳米纤维制备及其吸附VOCs性能研究[J]. 材料导报, 2024, 38(18): 23040151-8.
[15] 彭惠靖, 张卫民, 王玉罡, 卢琪愿, 王新宇. 复合材料HAP@nZVI对Mn(Ⅱ)的吸附性能与机理[J]. 材料导报, 2024, 38(16): 23020165-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed