Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24060139-7    https://doi.org/10.11896/cldb.24060139
  金属与金属基复合材料 |
基于超声法对不同状态高强度结构钢板残余应力研究
付同宇1,2, 曹燕光2, 李昭东2, 魏坤霞1,*, 张建卫3, 谭峰亮4
1 常州大学江苏省材料表面科学与技术重点实验室,石油和化工行业装备表面工程与新材料重点实验室,江苏 常州 213164
2 钢铁研究总院工程用钢研究院,北京 100081
3 钢研纳克检测技术股份有限公司,北京 100081
4 湖南人文科技学院材料与环境工程学院,湖南 娄底 417000
Study on Residual Stress of High-strength Structural Steel Plate Under Different States Based on Ultrasonic Method
FU Tongyu1,2, CAO Yanguang2, LI Zhaodong2, WEI Kunxia1,*, ZHANG Jianwei3, TAN Fengliang4
1 Jiangsu Provincial Key Laboratory of Materials Surface Science and Technology, Key Laboratory of Equipment Surface Engineering and New Materials for Petroleum and Chemical Industry, Changzhou University, Changzhou 213164, Jiangsu, China
2 Institute of Structural Steels, Central Iron and Steel Research Institute, Beijing 100081, China
3 NCS Testing Technology Co., Ltd., Beijing 100081, China
4 School of Materials and Environmental Engineering, Hunan University of Humanities and Technology, Loudi 417000, Hunan, China
下载:  全 文 ( PDF ) ( 33459KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着高强度结构钢板在工程领域的广泛应用,其残余应力的检测与调控对钢板及其构件的生产和应用具有重要意义。本工作基于超声法研究矫直和退火处理对高强度钢板残余应力的影响规律,并分析其微观结构特征与残余应力的内在联系。结果表明,700 MPa级钢板在热轧态存在较大的残余应力且分布不均匀,轧向的残余应力值为-26~232 MPa,横向的残余应力值为-562~-141 MPa。经矫直处理后,相对于热轧态,钢板的轧向和横向残余应力均有所改善,轧向和横向的最大残余应力与最小残余应力差值分别为168 MPa和351 MPa,下降了34.88%和16.62%。这是因为矫直改善了应力分布的均匀性,使钢板在较小的张力条件下发生塑性变形,晶体滑移促进晶粒取向的转动,有利于取向密度的不断增加,位错滑移更容易发生,使残余应力得以释放并重新分布。去应力热处理后,相对于矫直态,钢板的轧向和横向的最大残余应力与最小残余应力差值分别为79 MPa和228 MPa,下降了52.98%和35.04%。这是由于热激活的作用使晶体内部发生位错湮灭和重新排列,有效改善了加工过程中产生的大量杂乱排列的位错,钢板的残余应力及分布得到改善。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
付同宇
曹燕光
李昭东
魏坤霞
张建卫
谭峰亮
关键词:  超声法  残余应力  矫直  热处理  微观结构    
Abstract: With the wide application of high strength structural steel plate in engineering field, the detection and control of residual stress is of great significance to the production and application of steel plate and its components. In this work, the influence of straightening and annealing treatment on the residual stress of high strength steel plate was studied based on ultrasonic method, and the internal relationship between the microstructure and the residual stress was analyzed. The results show that the residual stress of 700 MPa steel plate in hot rolling state is large and uneven. The residual stress in rolling direction ranges from -26 MPa to 232 MPa, and the residual stress in transverse direction ranges from -562 MPa to -141 MPa. After straightening, the rolling direction and lateral residual stress of the steel plate are improved compared with the hot rolled state. The difference between the maximum and minimum rolling direction and lateral residual stress is 168 MPa and 351 MPa, which is reduced by 34.88% and 16.62%, because straightening improves the uniformity of stress distribution. The plastic deformation of the steel plate occurs under the condition of small tension, and the crystal slip promotes the rotation of grain orientation, which is conducive to the continuous increase of orientation density, and the dislocation slip is easier to occur, so that the residual stress can be released and redistributed. After stress-relieving heat treatment, compared with straightened state, the difference between the maximum and minimum residual stresses in rolling direction and transverse direction is 79 MPa and 228 MPa, decreasing by 52.98% and 35.04%. This is due to the effect of thermal activation, dislocation obligation and rearrangement occur inside the crystal, which effectively improves the large number of disordered dislocations generated during the processing. The residual stress and distribution of the steel plate are improved.
Key words:  ultrasonic method    residual stress    straightening    heat treatment    microstructure
发布日期:  2025-08-28
ZTFLH:  TG142.41  
  TG115.285  
基金资助: 钢铁研究总院自主投入研发专项基金重大项目(事21G62470ZD);江苏省碳达峰碳中和科技创新项目(BE2022044);江苏省国际科技合作项目(BZ2021078)
通讯作者:  *魏坤霞,常州大学材料科学与工程学院教授、硕士研究生导师。目前主要从事材料成形加工及纳米材料等方面的研究。kunxiawei@163.com   
作者简介:  付同宇,常州大学材料科学与工程学院硕士研究生,在魏坤霞教授的指导下进行研究。目前主要研究领域为低合金高强度钢板残余应力检测与调控。
引用本文:    
付同宇, 曹燕光, 李昭东, 魏坤霞, 张建卫, 谭峰亮. 基于超声法对不同状态高强度结构钢板残余应力研究[J]. 材料导报, 2025, 39(17): 24060139-7.
FU Tongyu, CAO Yanguang, LI Zhaodong, WEI Kunxia, ZHANG Jianwei, TAN Fengliang. Study on Residual Stress of High-strength Structural Steel Plate Under Different States Based on Ultrasonic Method. Materials Reports, 2025, 39(17): 24060139-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060139  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24060139
1 Yin B S, Zhao H P, Wang X H. Physical and Chemical Inspection (Physics Branch), 2007(12), 642(in Chinese).
印兵胜, 赵怀普, 王晓洪. 理化检验(物理分册), 2007(12), 642.
2 Tabatabaeian A, Ghasemi A R, Shokrieh M M, et al. Advanced Engineering Materials, 2022, 24(3), 2100786.
3 Song W T. Research on ultrasonic nondestructive testing and control technology of residual stress. Ph. D. Thesis, Beijing Institute of Technology, 2016 (in Chinese).
宋文涛. 残余应力超声无损检测与调控技术研究. 博士学位论文, 北京理工大学, 2016.
4 Song J, Xu C, Li Z. IOP Conference Series:Materials Science and Engineering, 2018, 397(1), 012136.
5 de Araújo Freitas V L, de Albuquerque V H C, de Macedo Silva E, et al. Materials Science and Engineering:A, 2010, 527(16-17), 4431.
6 Ambardar R, Muthu M T, Pathak S D, et al. Insight, 1995, 37(7), 536.
7 Cui D, He X P, Liu X R, et al. Journal of Shaanxi Normal University:Natural Science Edition, 2016, 44(1), 24(in Chinese).
崔东, 贺西平, 刘小荣, 等. 陕西师范大学学报:自然科学版, 2016, 44(1), 24.
8 Hirao M, Aoki K, Fukuoka H. Journal of the Acoustical Society of America, 1987, 81(5), 1434.
9 Ahmed S, Thompson R B. Review of Progress in Quantitative Nondestructive Evaluation, 1992, 11, 1999.
10 Rose J L. Ultrasonic guided waves in solid media, Cambridge University Press, US, 2014, pp. 36.
11 Karabutov A, Devichensky A, Ivochkin A, et al. Ultrasonics, 2008, 48(6), 631.
12 Castellano A, Fraddosio A, Marzano S, et al. Procedia Engineering, 2017, 199, 1519.
13 Wang T Z, Li Y, Dong Z, et al. Journal of Materials Engineering, 2023, 51(7), 33(in Chinese).
王天政, 李洋, 董哲, 等. 材料工程, 2023, 51 (7), 33.
14 Liu J L, Li Z D, Cao Y G, et al. Materials Engineering, DOI:10.11868/j.issn.1001-4381.2022.000984(in Chinese).
刘佳磊, 李昭东, 曹燕光, 等. 材料工程, DOI:10.11868/j.issn.1001-4381.2022.000984.
15 He L F, Liu J. Acoustic elasticity technology, Science Press, China, 2002, pp. 107 (in Chinese).
贺玲凤, 刘军. 声弹性技术, 科学出版社, 2002, pp. 107.
16 Shi Y W. Ultrasonic testing, China Machine Press, China, 2005, pp. 31 (in Chinese).
史亦伟. 超声波检测, 机械工业出版社, 2005, pp. 31.
17 Meng Y Y, Lin L, Chen J, et al. Journal of Materials Engineering, 2022, 50(10), 172(in Chinese).
孟亦圆, 林莉, 陈军, 等. 材料工程, 2022, 50(10), 172.
18 Xu C G, Li W B. Fundamentals of Ultrasonic Testing, Science Press, China, 2021, pp. 317 (in Chinese).
徐春广, 李卫彬. 无损检测超声波理论, 科学出版社, 2021, pp. 317.
19 Wang W, Rokhlin S I, Lippold J C, et al. Materials Evaluation, 1989, 47(12), 1388.
20 Han F X, Sun X P, Lou M Q, et al. Titanium Industry Progress, 2023, 40(6), 16(in Chinese).
韩飞孝, 孙小平, 楼美琪, 等. 钛工业进展, 2023, 40(6), 16.
21 Lean J T, Hameed T M S, Andrzej Ł, et al. Materials (Basel, Switzerland), 2023, 16(14), 5123.
22 Wackenrohr S, Herbst S, Wöbbeking P, et al. Journal of Manufacturing and Materials Processing, 2023, 7(4), 142.
23 Sravya T, Matteo S, Stefan Z. Acta Materialia, 2024, 262, 119413.
24 Zhu J H, Wei L L, Huang H F, et al. Journal of Materials Engineering, 2023, 5(10), 76(in Chinese).
朱家豪, 韦莉莉, 黄宏锋, 等. 材料工程, 2023, 5(10), 76.
25 Li S G. Post-processing of C19400 strip organizational performance and the influence of residual stress. Master's Thesis, Henan University of Science and Technology, China, 2022 (in Chinese).
李闪光. 后处理对C19400带材组织性能与残余应力的影响. 硕士学位论文, 河南科技大学, 2022.
26 Yang X, Fu B, Han J, et al. Journal of Materials Engineering, 2023, 51(11), 189(in Chinese).
杨旭, 傅斌, 韩洁, 等. 材料工程, 2023, 51(11), 189.
27 Li H, Li Z D, Cao J, et al. Journal of Materials Engineering, 2023, 51(9), 117(in Chinese).
李涵, 李昭东, 曹杰, 等. 材料工程, 2023, 51(9), 117.
28 Gao J M, Huang H, Shi W, et al. Journal of Materials Engineering, 2022, 50(11), 101(in Chinese).
高杰明, 黄晖, 石薇, 等. 材料工程, 2022, 50(11), 101.
[1] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[2] 曾鲁平, 乔敏, 赵爽, 王伟, 陈俊松, 朱伯淞, 冉千平, 洪锦祥. 乙烯-醋酸乙烯酯共聚物对喷射混凝土力学强度、渗透性能及水化微观
结构的影响
[J]. 材料导报, 2025, 39(5): 24020003-9.
[3] 郑惠泽, 何建丽, 高晨鑫, 章海明, 向雨欣. WE43镁合金温热压缩下织构演变及再结晶行为[J]. 材料导报, 2025, 39(5): 24020054-7.
[4] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[5] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[6] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[7] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[8] 李祥文, 李昆锋, 武晨浩, 费志方, 张震, 孙文彩, 杨自春. 不同碱性催化剂对疏水SiO2气凝胶性能的影响[J]. 材料导报, 2025, 39(17): 24080159-5.
[9] 荣辉, 王亚楠, 刘志华, 王海良, 黄阔薪. 海洋环境下硅藻生物的繁殖特性及在水泥基材料表面的附着状态[J]. 材料导报, 2025, 39(17): 24060213-7.
[10] 马宁, 朱建锋, 常柯, 秦宇星, 毛勇, 马文宗. 不同温度退火热处理对Al-Mg-Ga-Sn可溶铝合金塑性及组织的影响研究[J]. 材料导报, 2025, 39(17): 24080053-8.
[11] 刘煌海, 季韬, 刘信所, 胡志龙, 郑巧芳, 郑小燕. 纳米硅溶胶增强碳酸钠激发矿渣砂浆力学性能及机理研究[J]. 材料导报, 2025, 39(16): 24060009-8.
[12] 历健, 郝宏, 周志勇, 汪科良, 郑玉刚, 赵蒙, 周晖, 张凯锋. 乙炔流量对四面体含氢非晶碳薄膜结构、机械特性和大气摩擦学性能的影响[J]. 材料导报, 2025, 39(15): 25030081-8.
[13] 李灏, 刘宇伦, 刘金龙, 陈良贤, 李成明, 魏俊俊. 真空热处理对金刚石基TaxN薄膜微观结构及电学性能的影响[J]. 材料导报, 2025, 39(15): 24060003-5.
[14] 尹雪亮, 王慧芳, 杨茜, 徐磊, 马北越. ZrO2添加对六铝酸钙陶瓷微观结构及力学性能的影响[J]. 材料导报, 2025, 39(15): 24110086-5.
[15] 牛旭婧, 郭晨怡, 吴家奕, 张佳豪, 朋改非, 丁宏. 碳化硅晶须对超高性能混凝土力学性能的影响[J]. 材料导报, 2025, 39(15): 24050200-8.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed