Please wait a minute...
材料导报  2025, Vol. 39 Issue (17): 24060122-7    https://doi.org/10.11896/cldb.24060122
  金属与金属基复合材料 |
钨基合金靶材的粉末冶金制备工艺及其磁控溅射薄膜的研究进展
李锐1, 李瑞剑1, 江洪渠1, 罗圆1, 赵琪2,*, 易健宏1, 刘意春1,*
1 昆明理工大学材料科学与工程学院,昆明 650093
2 昆明贵金属研究所,昆明 650106
Research Progress in Powder Metallurgy Preparation of Tungsten-based Alloy Targets and Magnetron Sputtering Films
LI Rui1, LI Ruijian1, JIANG Hongqu1, LUO Yuan1 , ZHAO Qi2,*, YI Jianhong1, LIU Yichun1,*
1 Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, China
2 Kunming Institute of Precious Metals, Kunming 650106, China
下载:  全 文 ( PDF ) ( 19555KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 具有高密度、高纯度、高熔点及优异机械性能的钨基合金靶材在磁控溅射应用领域具有重要的应用价值。制备方法包括粉末冶金、熔炼等,其中粉末冶金法以较好的成分均匀性和细密的显微结构广受关注。磁控溅射作为一种先进的薄膜沉积技术,因其高效性和精确控制能力,被广泛用于钨基合金薄膜的制备。以钨基合金靶材为原材料,通过磁控溅射的方法制备的W-Mo、W-Cu、W-Ti、W-B等薄膜,目前已广泛应用于电子器件、机械加工和等离子体物理研究等多个领域。本文首先介绍了粉末冶金钨基靶材的主要制备方法,如热压、热等静压、放电等离子烧结技术等;然后,介绍了钨基合金靶材磁控溅射薄膜在无扩散屏障材料、超导材料、面向等离子体材料以及硬质涂层材料等领域的应用,并对其抗扩散性能、摩擦磨损性能以及其抗腐蚀氧化性能进行了介绍与分析。最后,展望了钨基合金靶材在未来在各个领域中的广阔应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李锐
李瑞剑
江洪渠
罗圆
赵琪
易健宏
刘意春
关键词:  钨基合金靶材  磁控溅射  薄膜  抗扩散  摩擦磨损  腐蚀氧化    
Abstract: Tungsten alloy materialhas become an important material in magnetron sputtering technology for its advantages such as high density, high purity, high melting point and excellent mechanical properties. Its preparation methods includes powder metallurgy, smelting, etc. Among which the powder metallurgy method is wide concerned with its good composition uniformity and fine microstructure. As an advanced film deposition technology, magnetron sputtering is widely used for the preparation of tungsten-based alloy films due to its high efficiency and precise control ability. The thin films of W-Mo, W-Cu, W-Ti and W-B are prepared by magnetron sputtering with tungsten base alloy as the raw material, which have been widely used in electronic devices, carbide coating and plasma physics research. In this paper, several preparation methods of tungsten-based alloy targets were introduced in detail, such as hot pressing, hot isostatic pressing, discharge plasma sintering technology. And then anti-diffusion properties, friction and wear properties, corrosion and oxidation properties of tungsten base alloy target magnetron sputtering film were analyzed, its application im many fields was introduced such as the non-diffusion barrier materials, superconducting materials, plasma-oriented materials, hard coating materials. Finally future broad development prospects in various fields was prospected.
Key words:  tungsten base alloy target    magnetron sputtering    thin film    diffusion impedance    frictional wear    oxidation corrosion
发布日期:  2025-08-28
ZTFLH:  TG146  
基金资助: 云南省科技厅项目(202303AP140006);云南贵金属实验室科技技术项目(2023050227)
通讯作者:  *赵琪,博士,昆明贵金属研究所助理研究员。目前主要从事金属靶材和金属基复合材料等方面的研究工作。zhaoqi@ipm.com.cn
刘意春,博士,昆明理工大学材料科学与工程学院教授、博士研究生导师。目前主要从事粉末冶金和金属基复合材料等方面的研究工作。Spsjtu@163.com   
作者简介:  李锐,现为昆明理工大学材料科学与工程学院硕士研究生,在刘意春教授的指导下进行研究。目前主要研究领域为金属靶材及表面工程。
引用本文:    
李锐, 李瑞剑, 江洪渠, 罗圆, 赵琪, 易健宏, 刘意春. 钨基合金靶材的粉末冶金制备工艺及其磁控溅射薄膜的研究进展[J]. 材料导报, 2025, 39(17): 24060122-7.
LI Rui, LI Ruijian, JIANG Hongqu, LUO Yuan , ZHAO Qi, YI Jianhong, LIU Yichun. Research Progress in Powder Metallurgy Preparation of Tungsten-based Alloy Targets and Magnetron Sputtering Films. Materials Reports, 2025, 39(17): 24060122-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060122  或          https://www.mater-rep.com/CN/Y2025/V39/I17/24060122
1 Gudmundsson J T. Plasma Sources Science and Technology, 2020, 29(11), 113001.
2 Chelvanathan P, Shahahmadi S A, Arith F, et al. Thin Solid Films, DOI:10.1016/j.tsf.2017.07.057.
3 Reza M, Sajuri Z, Yunas J, et al. IOP Conference Series:Materials Science and Engineering, DOI:10.1088/1757-899x/114/1/012116.
4 Wang Q X, Liang S H. Vacuum, 2011. 85(11), 979.
5 Kim S, Kwon T, Kim S, et al. International Journal of Refractory Metals and Hard Materials, 2024, 118, 106491.
6 Ivanov E, Del Rio E. International Journal of Refractory Metals and Hard Materials, 2018, 72, 223.
7 Gellerup S, Arnold C L, Cairns E, et al. Vacuum, 2023, 213, 112137.
8 AI Y P. Chemical Physics Letters, 2017, 690, 1.
9 Amirjan M, Zangeneh-madar K, Parvin N E. International Journal of Refractory Metals and Hard Materials, 2009, 27(4), 729.
10 Li Z B, Zhang H, Zhang G H, et al. Metallurgical and Materials Tran-sactions A, 2022, 53(3), 1085.
11 Germain F S, Slosarik S E. The Journal of the Minerals, DOI:10.1007/bf03378159.
12 Manikandan R, Raja Annamalai A. Materials Today Communications, 2024, 39, 108971.
13 Huang Z M, Wang D Z, Wu Z Z, et al. Powder Metallurgy Technology, 2021 39(5), 445(in Chinese).
黄志民, 王德志, 吴壮志, 等. 粉末冶金技术. 2021, 39(5), 445.
14 Dunlop J A, Rensing H. U. S. patent application, US4838935, 1989.
15 Wang Y M, Tang Q H, Zhou P. Journal of Materials Engineering and Performance, 2021, 30(10), 7223.
16 Xu L, Srinivasakannan C, Zhang L, et al. Journal of Alloys and Compounds, 2016, 658, 23.
17 Ma K, Cao X, Yang H, et al. Ceramics International, 2017, 43(12), 8551.
18 Byun J M, Lee E S, Heo Y J, et al. International Journal of Refractory Metals & Hard Materials, 2021, 99, 105602.
19 Wickersham C E, Poole J E, Mueller J J. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1992, 10(4), 1713.
20 Hu B, Cai G. Materials, 2022, 15(23), 8647.
21 Li X, Wang Q, Wei S, et al. Journal of Alloys and Compounds, 2023, 975, 172571.
22 Dine S, Bernard E, Herlin Boime N, et al. Advanced Engineering Materials, 2018, 20(8), 1701138
23 Wang Y, Tang Q, Chen D, et al. Journal of Thermal Spray Technology, DOI:10.1007/s11666-019-00958-x.
24 Hao Y, Tan C, Yu X, et al. Journal of Alloys and Compounds, 2020, 819, 152975.
25 Müller A V, Dorow-gerspach D, Balden M, et al. Journal of Nuclear Materials, 2022, 566, 153760.
26 Talignani A, Seede R, Whitt A, et al. Additive Manufacturing, 2022, 58, 103009.
27 Kim J Y, Lee E S, Heo Y J, et al. Powder Metallurgy, 2023, 66 (5), 644.
28 Wang Y, Tang Q, Chen D, et al. International Journal of Refractory Me-tals & Hard Materials, 2019, 87.
29 Engwall A M, Shin S J, Bae J, et al. Surface & Coatings Technology, 2019, 363, 191.
30 Pauleau Y. Thin Solid Films, DOI:10.1016/0040-6090(84)90051-8.
31 Bhagat S, Han H, Alford T L. Thin Solid Films, 2006, 515 (4), 1998.
32 Lo C F, Gilman P. Journal of Vacuum Science & Technology A:Vacuum, Surfaces, and Films, 1999, 17(2), 608.
33 Guidi V, Boscarino D, Comini E, et al. Sensors and Actuators B:Chemical, 2000, 65(1), 264.
34 Su Y H, Kuo T C, Lee W H, et al. Microelectronic Engineering, 2017, 171, 25.
35 Lazarides N, Tsironis G P. Physics Reports, 2018, 752, 1.
36 Suzuki M, Kobayashi N, Mukai K, et al. Journal of the Electrochemical Society, 1990, 137(10), 3213.
37 Kondo S. Journal of Materials Research, DOI:10.1557/jmr.1992.0853.
38 Nishino N. Carbon, DOI:10.1016/s0008-6223(97)82814-x.
39 Zhang W, Qi Y, Zhang L, et al. Surface and Coatings Technology, 2022, 434, 128165.
40 Pero R, Maizza G, Montanari R, et al. Materials, 2020, 13(9), 2137.
41 Zhou Z, Xu Y, Chen X, et al. Ceramics International, 2020, 46 (4), 4095.
42 Yumashev A, Mikhaylov A J P C. Polymer Composites, 2020, 41(7), 2875.
43 Chrzanowska J, Kurpaska Ł, Giyński M, et al. Ceramics International, 2016, 42(10), 12221.
44 Chrzanowska-Giyńska J, Denis P, Woźniacka S, et al. Ceramics International, 2018, 44 (16), 19603.
45 Jiang C, Pei Z, Liu Y, et al. Physica Status Solidi (A)-Applications and Materials Science, 2013, 210(6), 1221.
46 Radziejewska J, Psiuk R, Mościcki T. Coatings, 2020, 10(12), 1231.
47 Mahjabin S, Haque M M, Bashar M S, et al. Energy & Fuels, 2023, 37(24), 19860.
48 Yu H, Yang X, Xiao X, et al. Advanced Materials, 2018, 30(51).
49 Červená M, Čerstvý R, Dvoák T, et al. Journal of Alloys and Compounds, 2021, 888, 161558.
50 Sadovskiy Y, Begrambekov L, Ayrapetov A, et al. Journal of Physics:Conference Series, 2016, 748.
51 Euchner H, Mayrhofer P H, Riedl H, et al. Acta Materialia, 2015, 101, 55.
52 Smolik J, Kacprzyńska-Gołacka J, Sowa S, et al. Coatings, 2020, 10(9), 807.
53 Louro C, Cavaleiro A. Journal of The Electrochemical Society, DOI:10.1149/1.1837394.
54 Serdobintsev A A, Starodubov A V, Kozhevnikov I O, et al. Journal of Physics:Conference Series, 2020, 1697(1), 012054.
[1] 彭润玲, 王威, 刘锦悦, 高展, 郭俊德, 张耿. 冻干法制备石墨烯负载二硫化钼及其润滑性能研究[J]. 材料导报, 2025, 39(8): 24020011-7.
[2] 赵娣, 刘洪燕, 王树军, 孙欣语, 张紫璇, 齐学宇, 刘子帆. Z型异质结复合薄膜UIO-66-NH2/Ag/Ag3PO4/Ni的可见光催化性能及机理[J]. 材料导报, 2025, 39(8): 24030178-6.
[3] 黄晗冰, 王培, 乔石, 马如龙, 郝振华, 舒永春, 何季麟. Cu-0.9Be-1.5Ni-0.04Y合金的摩擦磨损与电化学腐蚀性能研究[J]. 材料导报, 2025, 39(7): 24010241-8.
[4] 卞宏友, 柳金生, 刘伟军, 张广泰, 姚佳彬, 邢飞. 激光沉积修复GH738/K417G合金时效热处理组织性能分析[J]. 材料导报, 2025, 39(3): 23110265-6.
[5] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[6] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[7] 张俊潇, 李振, 任志英, 马国政, 赵海朝, 王海斗. 自润滑轴承及其寿命研究现状与未来展望[J]. 材料导报, 2025, 39(17): 24070030-7.
[8] 郑玉刚, 苟世宁, 冯兴国, 汪科良, 赵蒙, 张凯锋, 周晖, 李林. 金属掺杂MoS2基复合薄膜的微观结构与真空摩擦学性能研究[J]. 材料导报, 2025, 39(15): 25040052-7.
[9] 胡少青, 岳赟, 平静艳, 邓四二, 杜三明. 不同氮气流量对等离子弧熔覆TiNx/Ti合金涂层微观组织及摩擦学性能的影响[J]. 材料导报, 2025, 39(14): 24070140-7.
[10] 石红利, 徐文杰, 桂凯旋, 陈静, 金海涛, 胡小刚. 磁控溅射制备Cr涂层及其在工况下的氧化行为研究[J]. 材料导报, 2025, 39(13): 24070064-10.
[11] 党婵娟, 沈霞, 张保龙, 郭鹏飞. 无机卤化物钙钛矿CsPbCl3纳米线的可控制备与光学性质[J]. 材料导报, 2025, 39(11): 24040008-5.
[12] 刘庆, 欧阳雪琼, 刘文财, 吕洋, 王双喜. 流延工艺制备氧化锆燃料电池薄膜的研究进展[J]. 材料导报, 2025, 39(10): 24020149-10.
[13] 温鑫, 李多生, 叶寅, 徐锋, 郎文昌, 刘俊红, 于爽爽, 余欣秀. 阴极碳靶电流对物理气相沉积制备ta-C薄膜性能的影响[J]. 材料导报, 2025, 39(10): 24030121-5.
[14] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[15] 杜金晶, 孙晔, 朱军, 李倩, 王斌, 刘景田, 孟晓荣. 五氧化二钒薄膜材料制备方法研究进展[J]. 材料导报, 2024, 38(5): 22100297-9.
[1] LI Jiawei, LI Dayu, GU Yixin, XIAO Jinkun, ZHANG Chao, ZHANG Yanjun. Research Progress of Regulating Anatase Phase of TiO2 Coatings Deposited by Thermal Spray[J]. Materials Reports, 2017, 31(3): 26 -31 .
[2] . Adhesion in SBS Modified Asphalt Containing Warm Mix Additive and
Aggregate System Based on Surface Free Theory
[J]. Materials Reports, 2017, 31(4): 115 -120 .
[3] JIA Zhihong, WENG Yaoyao, DING Lipeng, CHENG Tao, LIU Yingying, LIU Qing. Sn Microalloying for Aluminum Alloys: Strengthening Effects and Mechanisms[J]. Materials Reports, 2017, 31(9): 123 -127 .
[4] WANG Ru, ZHANG Shaokang, WANG Gaoyong. Influence and Mechanism of Mineral Admixtures on Setting and Hardening of Styrene-Butadiene Copolymer/Cement Composite Cementitious Material[J]. Materials Reports, 2017, 31(24): 69 -73 .
[5] DING Yutian, DOU Zhengyi, GAO Yubi, GAO Xin, LI Haifeng, LIU Dexue. In-situ Observation of Solidification Process of GH3625 Superalloy at Different Cooling Rates[J]. Materials Reports, 2017, 31(24): 150 -155 .
[6] JIN Chenxin, XU Guojun, LIU Liekai, YUE Zhihao, LI Xiaomin,TANG Hao, ZHOU Lang. Effects of Bulk Electrical Resistivity and Doping Type of Silicon on the Electrochemical Performance of Lithium-ion Batteries with Silicon/Graphite Anodes[J]. Materials Reports, 2017, 31(22): 10 -14 .
[7] LIU Guoyi, LIU Yuanjun, ZHAO Xiaoming. A Study on Protecting Efficiency to the Radiative Heat of the Outer Fabric for the Fire Proximity Suits[J]. Materials Reports, 2017, 31(22): 116 -120 .
[8] ZHANG Wangxi, WANG Yanzhi, LIANG Baoyan, LI Qiquan, LUO Wei, SUN Changhong, CHENG Xiaozhe, SUN Yuzhou. Review on the Development of Nanodiamonds Used as Functional Materials[J]. Materials Reports, 2018, 32(13): 2183 -2188 .
[9] YANG Fang, ZHANG Long, YU Kun, QI Tianjiao, GUAN Debin. Recent Advances in Humidity Sensitivity of Graphene[J]. Materials Reports, 2018, 32(17): 2940 -2948 .
[10] TIAN Yaqiang, LI Wang, ZHENG Xiaoping, WEI Yingli, SONG Jinying, CHEN Liansheng. Application of Alloy Elements in Quenching and Partitioning Steel:an Overview[J]. Materials Reports, 2019, 33(7): 1109 -1118 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed