Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24100157-7    https://doi.org/10.11896/cldb.24100157
  无机非金属及其复合材料 |
SiCf/SiC复合材料自愈合组元研究进展
成俊智1, 梁影1, 王衍飞1,*, 刘荣军1, 张金1, 王麓焱2
1 国防科技大学空天科学学院,新型陶瓷纤维及其复合材料重点实验室,长沙 410073
2 南昌航空大学材料科学与工程研究院,南昌 330063
Research Progress on Self-healing Components of SiCf/SiC Composite
CHENG Junzhi1, LIANG Ying1, WANG Yanfei1,*, LIU Rongjun1, ZHANG Jin1, WANG Luyan2
1 Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
2 School of Materials Science and Engineering, Nanchang Hangkong University, Nanchang 330063, China
下载:  全 文 ( PDF ) ( 30197KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 自愈合改性是 SiCf/SiC 复合材料能在航空发动机热端部件上应用的关键,目前自愈合改性SiCf/SiC 复合材料的耐温性和可靠性受到自愈合改性组元的限制。本文从自愈合组元作用机理出发,综述了不同自愈合组元的成分结构与自愈合效果以及制备技术研究进展,重点总结了各类自愈合组元的耐温极限与特点,指出了复合材料自愈合组元目前的不足与可能的发展方向。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
成俊智
梁影
王衍飞
刘荣军
张金
王麓焱
关键词:  复合材料  自愈合改性  SiC  耐温极限  使用寿命  可靠性    
Abstract: Self-healing modification is the key to the application of SiCf/SiC composites in the hot components of aircraft engines. At present, the temperature resistance and reliability of the self-healing modified SiCf/SiC composites are limited by self-healing components. Starting from the mechanism of self-healing components, this paper reviews the research progress of the composition structure, self-healing effect, and preparation technology of different self-healing components. It summarizes the temperature capability and characteristics of various self-healing components as well as the current shortcomings and possible development direction of self-healing components for ceramic matrix composites.
Key words:  composite    self-healing modification    SiC    maximum service temperature    service life    reliability
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TB332  
基金资助: 国家自然科学基金(U2241239)
通讯作者:  王衍飞,博士,国防科技大学副研究员,主要从事陶瓷基复合材料及先进陶瓷涂层的教学科研工作。wangyanfei@nudt.edu.cn   
作者简介:  成俊智,国防科技大学空天科学学院硕士研究生,在王衍飞副研究员的指导下进行研究。目前主要研究方向为陶瓷基复合材料。
引用本文:    
成俊智, 梁影, 王衍飞, 刘荣军, 张金, 王麓焱. SiCf/SiC复合材料自愈合组元研究进展[J]. 材料导报, 2025, 39(16): 24100157-7.
CHENG Junzhi, LIANG Ying, WANG Yanfei, LIU Rongjun, ZHANG Jin, WANG Luyan. Research Progress on Self-healing Components of SiCf/SiC Composite. Materials Reports, 2025, 39(16): 24100157-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100157  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24100157
1 Naslain R. Composites Science and Technology, 2004, 64, 155.
2 Diaz O G, Luna G G, Liao Z R, et al. International Journal of Machine Tools and Manufacture, 2019, 139, 24.
3 Hu C L, Hong W H, Xu X J, et al. Scientific Reports, 2017, 7, 13120.
4 Liu D X. Journal of Materials Engineering, 2017, 45(10), 1(in Chinese).
刘大响. 材料工程, 2017, 45(10), 1.
5 Zou H, Wang Y, Liu G, et al. Aeronautical Manufacturing Technology, 2017(15), 76 (in Chinese).
邹豪, 王宇, 刘刚, 等. 航空制造技术, 2017(15), 76.
6 Taguchi T, Igawa N, Yamada R, et al. The Journal of Physics and Chemistry of Solids, 2005, 66, 576.
7 Nasiri N, Patra N, Ni N, et al. Journal of the European Ceramic Society, 2016, 36, 3293.
8 Zhou Y, Zhou W, Luo F, et al. Transactions of Nonferrous Metals Society of China, 2014, 24, 1400.
9 Fatima Z, Nina B, Strahinja M, et al. Encyclopedia of Materials:Composites, 2021, 2, 3.
10 Liu D F, Tang Y J, Cong W L. Composite Structures, 2012, 94, 1265.
11 Chinmaya R D, Yung C S. International Journal of Machine Tools and Manufacture, 2012, 57, 102.
12 Liu Q M, Li Y C. Aerospace Power, 2021(6), 9 (in Chinese).
刘巧沐, 李园春. 航空动力, 2021(6), 9.
13 Liu Q M, Huang S Z, He A J. Journal of Materials Engineering, 2019, 47(2), 1(in Chinese).
刘巧沐, 黄顺洲, 何爱杰. 材料工程, 2019, 47(2), 1.
14 Lu Z L, Yue J L, Fu Z Y, et al. Journal of the European Ceramic Society, 2020, 40, 2821.
15 Padture N P. Nature Materials, 2016, 15, 804.
16 Liu B L, Liu R J, Zhang C R, et al. Bulletin of the Chinese Ceramic Society, 2014, 33(5), 1107 (in Chinese).
刘宝林, 刘荣军, 张长瑞, 等. 硅酸盐通报, 2014, 33(5), 1107.
17 Chen Z Z, Sun Z G, Chen X H, et al. Computational Materials Science, 2021, 195, 110475.
18 Opila E J. Journal of the American Ceramic Society, 2004, 82, 625.
19 Xu W B, Zok F W, Mcmeeking R M, et al. Journal of the American Ceramic Society, 2014, 97, 3676.
20 Zhang J, Liu R J, Jian Y J, et al. Corrosion Science, 2022, 197, 110099.
21 Linus U J T. Journal of the American Ceramic Society, 2005, 81, 2777.
22 Lu Z L, Bie B X, Pang A M, et al. International Journal of Applied Ceramic Technology, 2020, 17, 874.
23 Avadhesh K, Wataru S, Zeeshan A, et al. International Journal of Heat and Mass Transfer, 2024, 220, 124930.
24 Toshihiro I, Yasuhiko K, Kumagawa K, et al. Nature, 1998(6669), 773.
25 Xie F C, Duan Y P, Mo G M, et al. Materials (Basel, Switzerland), 2023, 16, 4172.
26 Glass D E. In:15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference. Dayton, 2008, pp. 2682.
27 Song C K, Ye F, Cheng L F, et al. Journal of Advanced Ceramics, 2022, 11, 1343.
28 Shi F M, Yin X W, Fan X M, et al. Journal of the European Ceramic Society, 2010, 30, 1955.
29 Tong C Q, Cheng L F, Yin X W, et al. Composites Science and Technology, 2008, 68, 602.
30 Luan X G, Xu X M, Zou Y, et al. Journal of the American Ceramic Society, 2019, 102, 6239.
31 Luan X G, Xu X M, Wang L, et al. Journal of the European Ceramic Society, 2021, 41, 1132.
32 Luan X G, Wang L, Zou Y, et al. Journal of the European Ceramic Society, 2019, 39, 3003.
33 Baldus, Jansen, Spporn. Science, 1999, 285, 699.
34 Jansen M. Solid State Ionics, 1997, 101, 1.
35 Hans B, Martin J. Angewandte Chemie, 1997, 36, 329.
36 Goujard S, Vandenbulcke L, Rey J, et al. U. S. patent, US5246736A, 1993.
37 Viricelle J P. Composites Science and Technology, 2001, 61, 607.
38 Yuri I, Hisamatsu T, Etori Y, et al. JSME International Journal:Series A, 2001, 44, 520.
39 Ruggles-Wrenn M B, Delapasse J, Chamberlain A L, et al. Materials Science and Engineering:A, 2012, 534, 119.
40 Quemard L, Rebillat F, Guette A, et al. Journal of the European Ceramic Society, 2007, 27, 2085.
41 Ruggles-Wrenn M B, Lee M D. Ceramic Transactions, 2018, 263, 231.
42 Ruggles-Wrenn M B, Christensen D T, Chamberlain A L, et al. Compo-sites Science and Technology, 2010, 71, 190.
43 Lamouroux F, Bertrand S, Pailler R, et al. Composites Science and Technology, 1999, 59, 1073.
44 陈义, 邱海鹏, 陈明伟, 等. 中国专利, CN106431452B, 2017.
45 陈义, 邱海鹏, 陈明伟, 等. 中国专利, CN117534474A, 2024.
46 Sun X N, Yin X W, Fan X M, et al. Journal of the European Ceramic Society, 2018, 38, 479.
47 Jiao J, Zhou Y R, Yang J H, et al. Aeronautical Manufacturing Technology, 2023, 66(4), 55(in Chinese).
焦健, 周怡然, 杨金华, 等. 航空制造技术, 2023, 66(4), 55.
48 Deng C Y, Luo R Y. China Ceramic Industry, 2017, 24 (6), 1(in Chinese).
邓楚燕, 罗瑞盈. 中国陶瓷工业, 2017, 24 (6), 1.
49 成来飞, 叶昉, 宋超坤, 等. 中国专利, CN113354435A, 2021.
50 Chen M W, Qiu H P, Liu S H, et al. Rare Metal Materials and Engineering, 2020, 49(2), 706(in Chinese).
陈明伟, 邱海鹏, 刘善华, 等. 稀有金属材料与工程, 2020, 49(2), 706.
51 宋环君, 于艺, 吴朝军, 等. 中国专利, CN112430111A, 2021.
52 Qiu H P, Guan X Y, Xu J J, et al. Advanced Ceramics, 2023, 44(3), 183(in Chinese).
邱海鹏, 关星宇, 徐俊杰, 等. 现代技术陶瓷, 2023, 44(3), 183.
53 Ji S Y, Liang B, Yang B, et al. Journal of the European Ceramic Society, 2023, 43, 1843.
54 Wang P, Wang Q L, Zhang X Y, et al. Journal of Inorganic Materials, 2019, 34, 904.
55 Li J X, Liu Y S, He F, et al. Journal of the European Ceramic Society, 2023, 43, 6606.
56 Ma Y J, Meng X Y, Yang S B, et al. Journal of the European Ceramic Society, 2023, 43, 4645.
57 He F, Liu Y S, Li J X, et al. Journal of the European Ceramic Society, 2024, 44, 2065.
58 Mu S, Ma Q, Zhang Y, et al. Journal of Inorganic Materials, 2023, 32(10), 4437.
59 Wang J, Zhang F, Liu Y S, et al. Ceramics International, 2023, 49, 37046.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[3] 苟清懿, 廖华, 陈凤阳, 曾瑞林, 刘慧哲, 杨妮, 侯彦青, 谢刚. 锂离子电池中锗基负极材料的构建及改性研究[J]. 材料导报, 2025, 39(8): 24050228-11.
[4] 脱锦鹏, 陈安琦, 姚富升, 徐俊杰, 李响, 董龙龙, 杨义. 颗粒增强耐热钛基复合材料设计制备研究进展[J]. 材料导报, 2025, 39(8): 24040119-10.
[5] 崔岩, 李硕, 曹雷刚, 杨越, 刘园. 颗粒级配对55%SiC/Al复合材料力学性能和尺寸稳定性的影响[J]. 材料导报, 2025, 39(8): 23120157-7.
[6] 李翠利, 申纯宇, 杨英, 王兴龙, 汤建伟, 化全县, 刘咏, 刘鹏飞, 丁俊祥, 申博, 王保明. 离子液体在纳米材料制备中的应用进展[J]. 材料导报, 2025, 39(7): 24020066-9.
[7] 杨士冠, 陈树权, 王剑, 何俊松, 程林, 翟立军, 刘虹霞, 张艳, 孙志刚. 基于碲化铋的热电制冷器瞬态制冷规律研究[J]. 材料导报, 2025, 39(6): 24020052-16.
[8] 孙国栋, 吕龙飞, 解静, 贾研, 康凯, 郑斌, 尹昭怡, 田清来. 碳纤维增强复合材料阻尼性能的研究进展[J]. 材料导报, 2025, 39(6): 24010168-11.
[9] 武明生, 侯震, 郑硕鵾, 金志明, 张亚军. 玻纤/聚丙烯直接注射成型及工艺参数影响研究[J]. 材料导报, 2025, 39(6): 24010149-6.
[10] 汪依宁, 陈东东, 肖守讷, 王明猛, 何子坤. 湿热老化环境下碳纤维增强树脂基复合材料力学性能退化机制及性能预测[J]. 材料导报, 2025, 39(6): 23110140-8.
[11] 姜文平, 庞兴志, 何娟霞, 杨文超, 湛永钟. 骨修复用钛合金-羟基磷灰石复合材料的制备工艺及性能综述[J]. 材料导报, 2025, 39(5): 24090227-14.
[12] 郭维诚, 吴杰, 郭淼现, 孙启梦. SiCp/Al超低温材料流动行为和本构模型构建[J]. 材料导报, 2025, 39(4): 23110133-8.
[13] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[14] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[15] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed