Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24100039-7    https://doi.org/10.11896/cldb.24100039
  高分子与聚合物基复合材料 |
聚氯乙烯混合增塑剂分子动力学模拟
于文喜1, 颜建伟2,*, 万颖芳1, 程娟3, 易夕剑1, 雷琴1, 蒋海云1
1 湖南工业大学包装工程学院,湖南 株洲 412007
2 华东交通大学土木建筑学院,南昌 330013
3 暨南大学包装工程学院,广东 珠海 519070
Molecular Dynamics Simulation of Polyvinyl Chloride Blended Plasticizers
YU Wenxi1, YAN Jianwei2,*, WAN Yingfang1, CHENG Juan3, YI Xijian1, LEI Qin1, JIANG Haiyun1
1 School of Packaging Engineering, Hunan University of Technology, Zhuzhou 412007, Hunan, China
2 School of Civil Engineering and Architecture, East China Jiaotong University, Nanchang 330013, China
3 College of Packaging Engineering, Jinan University, Zhuhai 519070, Guangdong, China
下载:  全 文 ( PDF ) ( 17195KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 采用分子动力学模拟方法构建了PVC-增塑剂体系模型。通过溶解度参数(δ)、玻璃化转变温度(Tg)、力学性能、相互作用能(EInteraction)、均方位移和径向分布函数(RDF),探究了新型生物基增塑剂(IPBL)与传统增塑剂邻苯二甲酸二辛酯(DOP)共混使用对PVC的增塑效果及增塑机理;评估了IPBL部分替代DOP用于PVC膜材的可行性。结果表明,IPBL与PVC的δ差值小于DOP与PVC的δ差值,说明IPBL与PVC的相容性更好;IPBL与PVC的EInteraction显著高于DOP与PVC的EInteraction,这主要归因于IPBL分子中的极性官能团与PVC分子链之间具有更强的相互作用。RDF分析进一步证实,IPBL与PVC分子间形成氢键的概率明显高于DOP与PVC之间,有助于增强IPBL与PVC间的相互作用。从力学性能和Tg的分析发现,IPBL/DOP混合增塑剂对PVC的增塑效果介于IPBL和DOP单独使用时的增塑效果之间,增塑效果随着IPBL比例的增加有所降低。从增塑剂扩散系数可清晰地得出,IPBL的耐迁移性和稳定性优于DOP。研究结果可为IPBL部分替代DOP的方案提供基础性数据和指导依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
于文喜
颜建伟
万颖芳
程娟
易夕剑
雷琴
蒋海云
关键词:  分子动力学模拟  聚氯乙烯  邻苯二甲酸二辛酯  生物基增塑剂    
Abstract: MD simulation is adopted to investigate the plasticizing effect and mechanism of polyvinyl chloride (PVC) by blending new bioctyl plasticizer (IPBL) with traditional plasticizer dioctyl phthalate (DOP) and explore the feasibility of IPBL partially replacing DOP for PVC film. The so-lubility parameter (δ), glass transition temperature (Tg), mechanical properties, interaction energy (EInteraction), mean squared displacement (MSD) and radial distribution function (RDF) were investigated. The difference of δ between IPBL and PVC was smaller than that between DOP and PVC, suggesting better compatibility between IPBL and PVC. The significantly higher EInteraction of IPBL with PVC compared to DOP with PVC is primarily attributed to the stronger interactions formed between the polar functional groups in IPBL molecule and PVC chain. The RDF results also confirm that the probability of hydrogen bond formation between IPBL and PVC is higher than that between DOP and PVC, which is conducive to the strong interaction between IPBL and PVC. It was found that the plasticizing effect of PVC-IPBL/DOP groups mixed plasticizer on PVC were lower than that of PVC-DOP group, but were superior to that of PVC-IPBL group by the analysis of mechanical properties and Tg. And the plasticizing effect of PVC decreased with the increase of the ratio of IPBL. The results show that migration resistance and stability of IPBL are superior to those of DOP by the analysis of plasticizers’s diffusion coefficients. The insights will ultimately contribute to the partial replacement of DOP.
Key words:  molecular dynamics simulation    polyvinyl chloride    dioctyl phthalate    bio-based plasticizer
出版日期:  2025-08-25      发布日期:  2025-08-15
ZTFLH:  TQ317  
基金资助: 湖南省自然科学基金(2024JJ7159);湖南省教育厅重点研究项目(23A0415);国家自然科学基金(12472012)
通讯作者:  颜建伟,华东交通大学土木建筑学院教授、博士研究生导师。目前主要从事超材料、纳米复合材料等方面的研究。tyanjianwei@jnu.edu.cn   
作者简介:  于文喜,湖南工业大学包装工程学院讲师、硕士研究生导师。目前主要从事食品包装技术与安全、功能性食品包装材料等方面的研究。
引用本文:    
于文喜, 颜建伟, 万颖芳, 程娟, 易夕剑, 雷琴, 蒋海云. 聚氯乙烯混合增塑剂分子动力学模拟[J]. 材料导报, 2025, 39(16): 24100039-7.
YU Wenxi, YAN Jianwei, WAN Yingfang, CHENG Juan, YI Xijian, LEI Qin, JIANG Haiyun. Molecular Dynamics Simulation of Polyvinyl Chloride Blended Plasticizers. Materials Reports, 2025, 39(16): 24100039-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100039  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24100039
1 Ali I, Yang W, Li X, et al. European Polymer Journal, 2020, 126, 109556.
2 Morgan A B, Mukhopadhyay P. Journal of Materials Science, 2022, 57, 7155.
3 Chiellini F, Ferri M, Morelli A. Progress in Polymer Science, 2013, 38(7), 1067.
4 Wang Y Q, Zhang H M. Journal of Agricultural and Food Chemistry, 2013, 61(46), 11191.
5 Jia P, Zhang M, Hu L, et al. Polymers (Basel), 2017, 9, 621.
6 Jia P, Ma Y, Kong Q, et al. Materials Today Chemistry, 2019, 13, 49.
7 Navarro R, Pérez Perrino M, García C, et al. Macromolecules, 2016, 49(6), 2224.
8 Sun H Z, Yang P, Fan H J, et al. Acta Polymerica Sinica, 2014(2), 233 (in Chinese).
孙华圳, 杨坡, 范浩军, 等. 高分子学报, 2014(2), 233.
9 Navarro R, Bierbrauer K, Mijangos C, et al. Polymer Degradation and Stability, 2008, 93(3), 585.
10 Yang Y, Han Y, Weng Y X, et al. China Plastics, 2023, 37(11), 87 (in Chinese).
杨洋, 韩宇, 翁云宣, 等. 中国塑料, 2023, 37(11), 87.
11 Zhao W H, Xu R K, Yu X L, et al. Fine Chemicals, 2024, 41 (8), 1840 (in Chinese).
赵文豪, 徐仁奎, 余小龙, 等. 精细化工, 2024, 41 (8), 1840.
12 Li Q G, Shu X G, Jia P Y, et al. Polymers, 2020, 12, 913.
13 Qian B F, Zhang J N, Wu M Y, et al. Polymer, 2023, 283, 126246.
14 Liu J Y, Yuan R, Sang Q, et al. Materials Chemistry and Physics, 2023, 295, 127068.
15 Wang F, Gu J Z, Hu B, et al. Chemical Industry and Engineering Progress, 2021, 40(11), 6315 (in Chinese).
王凡, 谷佳泽, 胡兵, 等. 化工进展, 2021, 40(11), 6315.
16 Zhu H C, Yang J J, Wu M Y, et al. ACS Omega, 2021, 6, 13161.
17 Yuan R, Gao L, Liu J Y, et al. European Polymer Journal, 2024, 203, 112644.
18 Wang H Z, Ding Y, Zhang D, et al. Journal of Petrochemical Universities, 2018, 31(4), 20 (in Chinese).
王汇淄, 丁煜, 张迪, 等. 石油化工高等学校学报, 2018, 31(4), 20.
19 England R M, Sonzini S, Buttar D, et al. Polymer Chemistry, 2022, 13, 2626.
20 Jian W, Wang X D, Lu H B, et al. Composites Science and Technology, 2021, 211, 108849.
21 Najafi V, Abdollahi H. European Polymer Journal, 2020, 128, 109620.
22 Yi X J, Yu W X, Yan J W, et al. Materials Today Communications, 2025, 42, 111287.
23 Li D Y, Panchal K, Vasudevan N K, et al. Chemical Engineering Science, 2022, 249, 117334.
24 Jagarlapudi S S, Cross H S, Das T, et al. ACS Applied Materials and Interfaces, 2023, 15, 24858.
25 Olowookere F V, Al Alshaikh A, Bara J E, et al. Molecular Simulation, 2023, 49(15), 1401.
26 Pan S Y, Hou D L, Chang J M, et al. Green Chemistry, 2019, 21, 6430.
27 Wei Q H, Wang Y N, Chai W H, et al. Ceramics Internationa, 2017, 43(16), 13702.
28 Yu Y H, Chen S S, Li X, et al. RSC Advances, 2016, 6(24), 20034.
29 Li X, He R R, Zhu L L, et al. Plastics, 2020, 49(5), 135 (in Chinese).
李席, 贺冉冉, 朱林林, 等. 塑料, 2020, 49(5), 135.
30 Barton A F M. Chemical Reviews, 1975, 75, 731.
31 Li D Y, Panchal K, Mafi R, et al. Macromolecules, 2018, 51(18), 6997.
32 Shi Y Q, Yao Y C, Lu S Y, et al. Polymers, 2022, 14, 4560.
33 Li J, Jin S H, Lan G C, et al. Chinese Journal of Polymer Science, 2019, 37, 834.
34 Sheng Y Z, Yang H, Li J Y, et al. Chemical Research in Chinese Universities, 2013, 29(4), 788.
35 Ji W M, Zhang L W. Composites Science and Technology, 2019, 183, 107789.
36 Olowookere F V, Barbosa G D, Turner C H. Industrial and Engineering Chemistry Research, 2024, 63, 1109.
37 Altenhofen Da Silva M, Adeodato Vieira M G, Gomes Maçumoto A C, et al. Polymer Testing, 2011, 30(5), 478.
38 Cao J J, Zhang Y D, Deng Y Y, et al. Materials Reports, 2022, 36(23), 211 (in Chinese).
曹晶晶, 张玉迪, 邓玉媛, 等. 材料导报, 2022, 36(23), 211.
39 Li L J, Xu X D, Song P A, et al. Modelling and Simulation in Materials Science and Engineering, 2021, 29(3), 35012.
40 Dong C Y, Zheng W Z, Wang L, et al. Materials and Design, 2021, 206, 109770.
41 Wang Z W, Li B, Lin Q B, et al. International Journal of Heat and Mass Transfer, 2018, 122, 694.
42 Zhang K Q, Wang Z W, Zeng S F, et al. Materials Reports, 2023, 37(22), 247 (in Chinese).
章凯倩, 王志伟, 曾少甫, 等. 材料导报, 2023, 37(22), 247.
43 Li M H, Yu W X, Cheng J, et al. Packaging Journal, 2025, 17(4), 33(in Chinese).
李谋海, 于文喜, 程娟, 等. 包装学报, 2025, 17(4), 33.
[1] 孟小丽, 李晓艳, 闫怡红, 李文博. 基于分子动力学的沥青-集料界面动态黏附及失效特性研究[J]. 材料导报, 2025, 39(8): 24010159-8.
[2] 周祎伟, 段海涛, 李健, 马利欣, 李文轩, 尤锦鸿, 贾丹. 外加磁场对摩擦副材料摩擦磨损及抗腐蚀性能影响的研究进展[J]. 材料导报, 2025, 39(2): 23110090-19.
[3] 耿长建, 杨怡斌, 由宝财, 董会苁, 马海坤. 成分相关的单晶Cr-Co-Ni合金形变机制的分子动力学模拟研究[J]. 材料导报, 2025, 39(2): 23120142-5.
[4] 李亚莎, 田泽, 王璐敏, 庞梦昊, 曾跃凯, 赵光辉. 表面接枝KH550 的石墨烯改性聚二甲基硅氧烷热力学性能的分子动力学模拟[J]. 材料导报, 2025, 39(2): 24010155-6.
[5] 兰亚坤, 李丹, 丁立洋, 董庭轩, 李依鹏, 郭生伟. 粉煤灰基防鼠咬PVC线缆护套材料的制备与性能研究[J]. 材料导报, 2025, 39(12): 24060115-6.
[6] 杨羽轩, 杜桂芳, 柳召刚, 赵金钢, 陈明光, 胡艳宏, 吴锦绣, 冯福山. 2-氨基烟酸镧铈对PVC热稳定性的影响[J]. 材料导报, 2024, 38(7): 22060141-8.
[7] 郑度奎, 李敬法, 宇波, 黄志强, 张引弟, 刘翠伟, 赵杰, 韩东旭. 非金属PE管材氢气-甲烷渗透研究进展[J]. 材料导报, 2024, 38(16): 23020018-11.
[8] 李泽政, 申宏飞, 吴文平. 含孔洞Cu64Zr36及Cu/Cu64Zr36复合材料拉伸变形的分子动力学研究[J]. 材料导报, 2024, 38(15): 23040235-6.
[9] 章凯倩, 王志伟, 曾少甫, 胡长鹰. 再生聚乙烯中挥发性气味物质扩散的分子动力学模拟[J]. 材料导报, 2023, 37(22): 22080036-8.
[10] 董会苁, 杨柳, 耿长建, 苏孺, 刘猛. 含空洞镍基单晶高温合金力学性能的分子动力学研究[J]. 材料导报, 2023, 37(15): 21100100-8.
[11] 白清顺, 郭万民, 窦昱昊, 郭永博, 张飞虎. 石墨烯与不锈钢微结构表面黏附行为的分子动力学模拟研究[J]. 材料导报, 2023, 37(1): 21050249-6.
[12] 秦青青, 胡应模, 秦舒浩, 杨园园, 雷婷, 李科褡, 武晓, 郭素芳. PVC基电磁屏蔽复合材料的制备及研究进展[J]. 材料导报, 2022, 36(Z1): 21110177-8.
[13] 曹晶晶, 张玉迪, 邓玉媛, 徐新宇. 不同尺寸的碳纳米管接枝聚酰亚胺复合材料的分子动力学模拟[J]. 材料导报, 2022, 36(23): 21060264-5.
[14] 刘冬梅, 张典, 彭艳周, 张亚利, 姚惠芹. 柠檬酸钠对半水石膏不同晶面结晶习性及力学性能的影响[J]. 材料导报, 2021, 35(18): 18052-18058.
[15] 裴培, 彭勇波. 基于分子动力学的磁流变液微观结构演化模拟与动态聚合分析[J]. 材料导报, 2021, 35(12): 12001-12007.
[1] . Effect of Annealing on Crystalline Structure and Low-temperature Toughness of
Polypropylene Random Copolymer Dedicated Pipe Materials
[J]. Materials Reports, 2017, 31(4): 65 -69 .
[2] YAN Xin, HUI Xiaoyan, YAN Congxiang, AI Tao, SU Xinghua. Preparation and Visible-light Photocatalytic Activity of Graphite-like Carbon Nitride Two-dimensional Nanosheets[J]. Materials Reports, 2017, 31(9): 77 -80 .
[3] DU Wenbo, YAO Zhengjun, TAO Xuewei, LUO Xixi. High-temperature Anti-oxidation Property of Al2O3 Gradient Composite Coatings on TC11 Alloys[J]. Materials Reports, 2017, 31(14): 57 -60 .
[4] WANG Xinyu, ZHEN Siqi, DONG Zhengchao, ZHONG Chonggui. Electrocaloric Effects of Ferroelectric Materials: an Overview[J]. Materials Reports, 2017, 31(19): 13 -18 .
[5] WANG Bin, ZHANG Lele, DU Jinjing, ZHANG Bo, LIANG Lisi, ZHU Jun. Applying Electrothermal Reduction Method to the Preparation of V-Ti-Cr-Fe Alloys Serving as Hydrogen Storage Materials[J]. Materials Reports, 2018, 32(10): 1635 -1638 .
[6] GAO Wei, ZHAO Guangjie. Synergetic Oxidation Modification of Wooden Activated Carbon Fiber with Nitric Acid and Ceric Ammonium Nitrate[J]. Materials Reports, 2018, 32(9): 1507 -1512 .
[7] ZHANG Tiangang,SUN Ronglu,AN Tongda,ZHANG Hongwei. Comparative Study on Microstructure of Single-pass and Multitrack TC4 Laser Cladding Layer on Ti811 Surface[J]. Materials Reports, 2018, 32(12): 1983 -1987 .
[8] WANG Bilei, LI Yongcan, SONG Changjiang. A State-of-the-art Review on Yield Point Elongation Phenomenon of Low Carbon Steel[J]. Materials Reports, 2018, 32(15): 2659 -2665 .
[9] ZHU Yaming, ZHAO Chunlei, LIU Xian, ZHAO Xuefei, GAO Lijuan, CHENG Junxia. Study on the Basic Physical Properties of Toluene Soluble Extracted from Coal Tar Pitch[J]. Materials Reports, 2019, 33(2): 368 -372 .
[10] ZHOU Chao, LI Detian, ZHOU Hui, ZHANG Kaifeng, CAO Shengzhu. Non-evaporable Getter Films for Vacuum Packaging of MEMSDevices: an Overview[J]. Materials Reports, 2019, 33(3): 438 -443 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed