Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24090140-7    https://doi.org/10.11896/cldb.24090140
  无机非金属及其复合材料 |
冷压成型-无压烧结制备高强度氧化铋陶瓷
肖世杰1, 茆峰1, 邹青2, 曾献2, 燕青芝1,*
1 北京科技大学材料科学与工程学院,北京 100083
2 中广核研究院有限公司,广东 深圳 518000
Preparation of High-strength Bismuth Oxide Ceramics via Cold Pressing and Pressureless Sintering
XIAO Shijie1, MAO Feng1, ZOU Qing2, ZENG Xian2, YAN Qingzhi1,*
1 School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China
2 China Nuclear Power Technology Research Institute, Shenzhen 518000, Guangdong, China
下载:  全 文 ( PDF ) ( 49712KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 通过粉末冶金技术制备高致密高强度氧化铋(Bismuth oxide,Bi2O3)陶瓷块体,探究压制压力和烧结温度对其微观组织和力学性能的影响,结果表明,Bi2O3陶瓷力学性能受两者的交互影响,表现出复杂的变化趋势。低温烧结(580 ℃)时Bi2O3陶瓷抗弯强度随压制压力的增大单调增加,中温(630 ℃和680 ℃)烧结时先增后降,高温(730 ℃)烧结时陶瓷发生鼓泡,产生贯穿性裂纹。烧结过程中的相变及伴随的体积变化是力学性能发生变化的原因。升温过程中,α-Bi2O3相转变为δ-Bi2O3相。降温过程中,δ-Bi2O3相向γ-Bi2O3相和α-Bi2O3相转变,导致体积膨胀和内应力增加。压制压力越大,烧结温度越高,相变内应力越大,陶瓷强度越低。在270 MPa压制成型和630 ℃烧结温度下,制备出的Bi2O3陶瓷相对密度达到95.9%,抗弯强度高达90.6 MPa。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
肖世杰
茆峰
邹青
曾献
燕青芝
关键词:  氧化铋陶瓷  粉末冶金  相变  力学性能    
Abstract: High-density and high-strength bismuth oxide ceramics were prepared by powder metallurgy. The effects of pressing pressure and sintering temperature on the microstructure and mechanical properties were investigated. The results indicate that the mechanical properties of the ceramics are influenced by the interaction of these two factors. Specifically, the flexural strength of the ceramics increases monotonically with the increase in pressing pressure at low temperature (580 ℃), initially increases and then decreases at medium temperature (630 ℃ and 680 ℃), and exhibits bubble formation and penetrative cracks at high temperature (730 ℃). The variation in mechanical properties is attributed to phase changes and the accompanying volume changes during sintering. During the heating process, the α-Bi2O3 phase transformed into the δ-Bi2O3 phase. Upon cooling, the δ-Bi2O3 phase converted to both the γ-Bi2O3 and α-Bi2O3 phases, leading to volume expansion and increased internal stress. Higher pressing pressures and sintering temperature result in greater phase transformation stress, which in turn reduces the strength of the ceramics. The relative density and flexural strength of the prepared bismuth oxide ceramics reached 95.9% and 90.6 MPa, respectively, at a pressing pressure of 270 MPa and a sintering temperature of 630 ℃.
Key words:  bismuth oxide ceramic    powder metallurgy    phase transformation    mechanical property
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TL349  
基金资助: 科技部重点研发项目(2022YFB1902500)
通讯作者:  燕青芝,北京科技大学材料科学与工程学院教授、博士研究生导师,核材料研究所副所长。长期从事核能相关材料和部件的制备及应用研究,包括先进耐热耐蚀抗辐照钢的全流程制备、碳化硅基陶瓷材料和部件的制备以及液态金属中第二相的生长行为等。qzyan@ustb.edu.cn   
作者简介:  肖世杰,北京科技大学材料科学与工程学院硕士研究生,在燕青芝教授的指导下进行研究。目前主要研究方向为第四代铅铋块堆中控氧剂的制备。
引用本文:    
肖世杰, 茆峰, 邹青, 曾献, 燕青芝. 冷压成型-无压烧结制备高强度氧化铋陶瓷[J]. 材料导报, 2025, 39(16): 24090140-7.
XIAO Shijie, MAO Feng, ZOU Qing, ZENG Xian, YAN Qingzhi. Preparation of High-strength Bismuth Oxide Ceramics via Cold Pressing and Pressureless Sintering. Materials Reports, 2025, 39(16): 24090140-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24090140  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24090140
1 Li W, Zhou K C, Yang H. Journal of Materials Science and Engineering, 2004(1), 154(in Chinese).
李卫, 周科朝, 杨华. 材料科学与工程学报, 2004(1), 154.
2 Mane S A, Kashale A A, Kamble G P, et al. Journal of Alloys and Compounds, 2022, 926, 166722.
3 Liu R, Ma L, Niu G, et al. Advanced Functional Materials, 2017, 27(29), 1701635.
4 Sohail A, Shah M A, Majid K. ECS Journal of Solid State Science and Technology, 2023, 12(1), 11001.
5 Shuk P, Wiemhöfer H D, Guth U, et al. Solid State Ionics, 1996, 89, 179.
6 Lee K T, Yoon H S, Wachsman E D. Journal of Materials Research, 2012, 27(16), 2063.
7 Selvamani T, Anandan S, Granone L, et al. Materials Chemistry Frontiers, 2018, 2(9), 1664.
8 Labib S. Journal of Saudi Chemical Society, 2017, 21(6), 664.
9 Zou W, Hao W C, Xin X, et al. Acta Inorganic Chemistry, 2009, 25(11), 1971(in Chinese).
邹文, 郝维昌, 信心, 等. 无机化学学报, 2009, 25(11), 1971.
10 Zhang Z G, Wang X F, Wang L L, et al. Silicate Bulletin, 2008(2), 411(in Chinese).
张争光, 王秀峰, 王莉丽, 等. 硅酸盐通报, 2008(2), 411.
11 Wu S, Wei X, Wang X, et al. Journal of Materials Science & Technology, 2010, 26(5), 472.
12 Raghvendra, Singh P. Journal of the European Ceramic Society, 2015, 35(5), 1485.
13 Lee H, Park J, Lim Y, et al. Ceramics International, 2022, 48(2), 2865.
14 Xu D, Shi L, Wu Z, et al. Journal of the European Ceramic Society, 2009, 29(9), 1789.
15 Fruth V, Ianculescu A, Berger D, et al. Journal of the European Ceramic Society, 2006, 26(14), 3011.
16 Song J, Zhu G, Xu H, et al. Ceramics International, 2020, 46(9), 13848.
17 Скобеев Д А, Легких А Ю. Вопросы Атомной Науки И Техники, 2021(3), 184.
18 Mukhopadhyay A, Basu B. International Materials Reviews, 2007, 52(5), 257.
19 Lu K. International Materials Reviews, 2008, 53(1), 23.
20 Torralba J M, Campos M. Revista de Metalurgia, 2014, 50(2), e017.
21 Lóh N J, Simão L, Faller C A, et al. Ceramics International. 2016, 42(11), 12556.
22 Fang Z Z, Wang H. International Materials Reviews, 2013, 53(6), 326.
23 Hu L, Wang C. Ceramics International. 2010, 36(5), 1697.
24 Olevsky E A, Tikare V, Garino T. Journal of the American Ceramic Society, 2006, 89(6), 1914.
25 Galotta A, Sglavo V M. Journal of the European Ceramic Society, 2021, 41(16), 1.
26 Gandhi A C, Chi-yuan L, Kuan-ting W, et al. Nanoscale, 2020, 12(47), 24119.
27 Vila M, Díaz-Guerra C, Piqueras J. Materials Chemistry and Physics, 2012, 133(1), 559.
28 Leng D, Wang T, Du C, et al. Ceramics International, 2022, 48(13), 18270.
29 Cornei N, Tancret N, Abraham F, et al. Inorganic Chemistry, 2006, 45(13), 4886.
30 Li R, Zhen Q, Guo S Q, et al. Journal of Functional Materials, 2006(11), 1828(in Chinese).
李榕, 甄强, 郭曙强, 等. 功能材料, 2006(11), 1828.
31 Ruggieri C, Dodds R H. Engineering Fracture Mechanics, 2018, 187, 381.
32 Qian G, Lei W, Zhu S, et al. Procedia Structural Integrity, 2018, 13, 2174.
33 Jivkov A P, Ford M, Yankova M, et al. Procedia Structural Integrity, 2019, 23, 39.
34 He J Y, Wu Y X, Sun W, et al. Chinese Journal of Nonferrous Metals, 2022, 32(5), 1444(in Chinese).
何建勇, 吴云霞, 孙伟, 等. 中国有色金属学报, 2022, 32(5), 1444.
35 Atou T, Faqir H, Kikuchi M, et al. Materials Research Bulletin, 1998, 33(2), 289.
36 Harwig A H. Zeitschrift für Anorganische und Allgemeine Chemie, 1978, 444(1), 151.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 祝林, 王帅, 游龙, 刘娟, 逄显娟, 陆焕焕, 宋晨飞, 张永振. Mo2BC增强Al基复合材料摩擦学性能研究[J]. 材料导报, 2025, 39(9): 24010247-6.
[6] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[7] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[8] 曹世豪, 赵锡佳, 王方全, 喻贤磊, 杨荣山. 方腔内正十八烷相变材料凝固放热特性试验研究[J]. 材料导报, 2025, 39(9): 24040013-6.
[9] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[10] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[11] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[12] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[13] 张鹏, 李兵, 徐飞越, 汪锐杰, 王敏. 预处理条件对QP980钢组织及塑性失稳行为的影响[J]. 材料导报, 2025, 39(8): 24020130-6.
[14] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[15] 鲍艳, 谢梦爽, 郭茹月, 张婧. VO2智能调温涂层的研究进展[J]. 材料导报, 2025, 39(7): 24030036-7.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed