Please wait a minute...
材料导报  2025, Vol. 39 Issue (16): 24060036-7    https://doi.org/10.11896/cldb.24060036
  高分子与聚合物基复合材料 |
纳米氧化锌改性间位芳纶绝缘纸力学和热学性能的分子动力学模拟
李亚莎*, 王璐敏, 庞梦昊, 田泽, 曾跃凯, 赵光辉
三峡大学电气与新能源学院,湖北 宜昌 443002
Molecular Dynamics Simulation of Mechanical and Thermal Properties of Nano-zinc Oxide Modified Meta-aramid Insulating Paper
LI Yasha*, WANG Lumin, PANG Menghao, TIAN Ze, ZENG Yuekai, ZHAO Guanghui
School of Electrical and New Energy, China Three Gorges University, Yichang 443002, Hubei, China
下载:  全 文 ( PDF ) ( 11736KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 间位芳纶以其优异的热稳定性和介电性能,在电气绝缘领域中得到广泛应用。为了探究纳米氧化锌(nano-ZnO)掺杂对间位芳纶绝缘纸热学性能和力学性能的影响,本工作在Materials Studio中建立了纯间位芳纶模型以及nano-ZnO含量分别为3%(质量分数,下同)、6%、9%、12%的间位芳纶与nano-ZnO复合模型。利用分子动力学模拟计算了改性前后间位芳纶的内聚能密度、热导率、力学性能、玻璃化转变温度等参数。结果表明:在nano-ZnO掺杂量为9%时,间位芳纶的各项性能达到最佳。相较于未改性模型,其内聚能密度提升了64%,热导率提升了53%,玻璃化转变温度提升了37 K,杨氏模量和剪切模量分别提升了33%和28%。本工作可为间位芳纶绝缘纸的掺杂及性能调控提供理论依据和参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李亚莎
王璐敏
庞梦昊
田泽
曾跃凯
赵光辉
关键词:  间位芳纶绝缘纸  纳米氧化锌(nano-ZnO)  热学性能  力学性能    
Abstract: Meta-aramid is widely used in the field of electrical insulation due to its excellent thermal stability and dielectric properties. In order to explore the effect of nano-zinc oxide (nano-ZnO) doping on the thermal and mechanical properties of meta-aramid insulating paper, a pure meta-aramid model and a composite model of meta-aramid and nano-ZnO with nano-ZnO content of 3%, 6%, 9% and 12% were established in Mate-rials Studio. Molecular dynamics simulations were used to calculate the cohesive energy density, thermal conductivity, mechanical properties, glass transition temperature and other parameters of meta-aramid before and after modification. The results show that when the doping content of nano-ZnO is 9%, the properties of meta-aramid reach the best. Compared with the unmodified model, the cohesive energy density was increased by 64%, thermal conductivity increased by 53%, the glass transition temperature has been increased by 37 K, the Young’s modulus and shear modulus increased by 33% and 28%, respectively. This work can provide a theoretical basis and reference for the doping and performance control of meta-aramid insulating paper.
Key words:  meta-aramid insulation paper    nano-zinc oxide(nano-ZnO)    thermal property    mechanical property
出版日期:  2025-08-15      发布日期:  2025-08-15
ZTFLH:  TM215  
基金资助: 国家自然科学基金(51577105)
通讯作者:  李亚莎,博士,三峡大学电气与新能源学院教授、博士研究生导师。目前主要从事电力系统绝缘老化与电磁场数值仿真计算等研究工作。liyasha@ctgu.edu.cn   
引用本文:    
李亚莎, 王璐敏, 庞梦昊, 田泽, 曾跃凯, 赵光辉. 纳米氧化锌改性间位芳纶绝缘纸力学和热学性能的分子动力学模拟[J]. 材料导报, 2025, 39(16): 24060036-7.
LI Yasha, WANG Lumin, PANG Menghao, TIAN Ze, ZENG Yuekai, ZHAO Guanghui. Molecular Dynamics Simulation of Mechanical and Thermal Properties of Nano-zinc Oxide Modified Meta-aramid Insulating Paper. Materials Reports, 2025, 39(16): 24060036-7.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24060036  或          https://www.mater-rep.com/CN/Y2025/V39/I16/24060036
1 Han Xiancai, Sun Xin, Chen Haibo, et al. Proceedings of the CSEE, 2020, 40(14), 4371(in Chinese).
韩先才, 孙昕, 陈海波, 等. 中国电机工程学报, 2020, 40(14), 4371.
2 Zhou Yuanxiang, Chen Jianning, Zhang Ling, et al. High Voltage Technology, 2021, 47(7), 2396(in Chinese).
周远翔, 陈健宁, 张灵, 等. 高电压技术, 2021, 47(7), 2396.
3 Wang Wei, Dong Wenyan, Jiang Da, et al. Insulation Materials, 2018, 51(5), 7(in Chinese).
王伟, 董文妍, 蒋达, 等. 绝缘材料, 2018, 51(5), 7.
4 Ou Xiaobo, Zhou Dan, Lin Chunyao, et al. China Southern Power Grid Technology, 2015, 9(9), 58(in Chinese).
欧小波, 周丹, 林春耀, 等. 南方电网技术, 2015, 9(9), 58.
5 Xie Song, Cai Jinding, Lin Han. Journal of Electrical Science and Technology, 2017, 32(1), 123(in Chinese).
谢松, 蔡金锭, 林韩. 电力科学与技术学报, 2017, 32(1), 123.
6 Wang Y, Luo Y, Guan J, et al. Polymer Composites, 2020, 41, 360.
7 Mehmet Karatas, Yunus Bicen. Renewable and Sustainable Energy Reviews, 2022, 167, 112645.
8 Liao Ruijin, Yang Lijun, Zheng Hanbo, et al. Transactions of China Electrotechnical Society, 2012, 27(5), 1(in Chinese).
廖瑞金, 杨丽君, 郑含博, 等. 电工技术学报, 2012, 27(5), 1.
9 Tang C, Zhang S, Li X, et al. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 22(6), 3608.
10 Okabe S, Ueta G, Tsuboi T. IEEE Transactions on Dielectrics and Electrical Insulation, 2015, 20(1), 346.
11 Ma Jie, Huang Meng, Su Yanxiao, et al. Proceedings of the CSEE, 2022, 42(8), 3086(in Chinese).
马婕, 黄猛, 苏妍箫, 等. 中国电机工程学报, 2022, 42(8), 3086.
12 Zhang Fuzhou, Liao Ruijin, Yuan Yuan, et al. High Voltage Technology, 2012, 38(3), 691(in Chinese).
张福州, 廖瑞金, 袁媛, 等. 高电压技术, 2012, 38(3), 691.
13 Liao Ruijin, Shao Shanfeng, Cheng Li, et al. Smart Power, 2017, 45(7), 9(in Chinese).
廖瑞金, 邵山峰, 成立, 等. 智慧电力, 2017, 45(7), 9.
14 Yang Rumeng, Xia Lei, Zhuang Xupin. Synthetic Fibers, 2021, 50(3), 30(in Chinese).
杨如梦, 夏磊, 庄旭品. 合成纤维, 2021, 50(3), 30.
15 Peng Neng, Zhou You, Sui Sanyi, et al. Journal of Insulation Materials, 2019, 52(11), 17(in Chinese).
彭能, 周游, 隋三义, 等. 绝缘材料, 2019, 52(11), 17.
16 Liu Daosheng, Zhou Chunhua, Ding Jin, et al. Transactions of China Electrotechnical Society, 2023, 38(9), 2464(in Chinese).
刘道生, 周春华, 丁金, 等. 电工技术学报, 2023, 38(9), 2464.
17 Mo Yang, Yang Lijun, Yan Shuiqiang, et al. Transactions of China Electrotechnical Society, 2018, 33(19), 4618(in Chinese).
莫洋, 杨丽君, 鄢水强, 等. 电工技术学报, 2018, 33(19), 4618.
18 Liu Daosheng, Guo Zhengyang, Zhao Ziming, et al. High Voltage Technology, 2021, 47(9), 3134. (in Chinese)
刘道生, 郭正阳, 赵子明, 等. 高电压技术, 2021, 47(9), 3134.
19 Tang Chao, Zheng Wei, Wang Lihan, et al. High Voltage, 2022, 5, 264.
20 Chen Xiao, Shi Qian, Yang Le, et al. Advances in Chemical Industry, 2018, 37(2), 621(in Chinese).
陈枭, 石倩, 杨乐, 等. 化工进展, 2018, 37(2), 621.
21 Yu Jia, Yang Qian, Zhang Yadong. Modern Chemical Industry, 2024, 44(2), 76(in Chinese).
于佳, 杨茜, 章亚东. 现代化工, 2024, 44(2), 76.
22 Yang Fengxia, Liu Qili, Bi Lei. Anhui Chemical Industry, 2006(1), 13(in Chinese).
杨凤霞, 刘其丽, 毕磊. 安徽化工, 2006(1), 13.
23 Li Yasha, Wang Jiamin, Xia Yu, et al. Journal of Composites, 2023, 41(1), 485(in Chinese).
李亚莎, 王佳敏, 夏宇, 等. 复合材料学报, 2023, 41(1), 485.
24 Chen Yuanzhao, Chen Aijiu, Li Chaojie, et al. China Journal of Highway and Transportation, 2017, 30(7), 25(in Chinese).
陈渊召, 陈爱玖, 李超杰, 等. 中国公路学报, 2017, 30(7), 25.
25 Li Qingmin, Huang Xuwei, Liu Tao, et al. Transactions of China Electrotechnical Society, 2016, 31(12), 1(in Chinese).
李庆民, 黄旭炜, 刘涛, 等. 电工技术学报, 2016, 31(12), 1.
26 Li Jiacai, Chen Jiming, Zhu Mingxiao, et al. Insulation Materials, 2019, 52(6), 79(in Chinese).
李加才, 陈继明, 朱明晓, 等. 绝缘材料, 2019, 52(6), 79.
27 Li Yasha, Qu Cong, Xia Yu, et al. High Voltage Technology, 2023, 49(12), 4890(in Chinese).
李亚莎, 瞿聪, 夏宇, 等. 高电压技术, 2023, 49(12), 4890.
28 Wang X B, Tang C, Wang Q, et al. Energies, 2017, 10(9), 1377.
29 Nagaki H W, Siesler K, Mitsui S, et al. Biomacromole-cules, 2010, 11(9), 2300.
30 Li Yasha, Meng Fanqiang, Zhang Xiaobin, et al. Insulation Materials, 2019, 52(7), 22(in Chinese)
李亚莎, 孟凡强, 章小彬, 等. 绝缘材料, 2019, 52(7), 22.
31 Li Jiaxuan. Molecular simulation of mechanical and thermal properties of fullerene spheres reinforced epoxy composites. Master's Thesis, Harbin Institute of Technology, China, 2020(in Chinese).
李佳璇. 富勒烯球增强环氧复合材料力学及热学性质的分子模拟. 硕士学位论文, 哈尔滨工业大学, 2020.
32 Wang L, Zhang B, Li X, et al. The Journal of Adhesion, 2021, 97(4), 346.
33 Hosoya R, Ito M, Nakajima K, et al. ACS Applied Polymer Materials, 2022, 4(4), 2401.
34 Yuan Xiaoqin, Cao Xianchao, Ma Yanbin, et al. Journal of Tropical Crops, 2022, 43(11), 2215(in Chinese).
袁晓钦, 曹献超, 马艳彬, 等. 热带作物学报, 2022, 43(11), 2215.
35 Pan Zhen, Zhu Mengzhao, Ye Wenyu, et al. Insulation Materials, 2019, 52(11), 55(in Chinese).
潘振, 朱孟兆, 叶文郁, 等. 绝缘材料, 2019, 52(11), 55.
36 Zhang Meiyun, Yang Bin, Song Shunxi, et al. China Paper Making, 2022, 41(11), 1(in Chinese).
张美云, 杨斌, 宋顺喜, 等. 中国造纸, 2022, 41(11), 1.
37 Liu Wanqiang, Yang Fan, Yuan Hua, et al. Acta Chemologica Sinica, 2020, 71(11), 5159(in Chinese).
刘万强, 杨帆, 袁华, 等. 化工学报, 2020, 71(11), 5159.
38 Li Yasha, Chen Junzhang, Guo Yujie, et al. Application of Engineering Plastics, 2023, 51(9), 32. (in Chinese).
李亚莎, 陈俊璋, 郭玉杰, 等. 工程塑料应用, 2023, 51(9), 32.
39 Zhang Yiyi, Xu Chuqi, Wei Wenchang, et al. High Voltage, 2023, 8(3), 599.
40 Zhang Xiaoxing, Chen Xiaoyu, Xiao Song, et al. High Voltage Technology, 2018, 44(3), 740(in Chinese).
张晓星, 陈霄宇, 肖淞, 等. 高电压技术, 2018, 44(3), 740.
41 Tang Chao, Li Xu, Li Zhiwei, et al. Polymers, 2018, 10, 1348.
42 Zhang Wenqing, Li Hao, Sui Gang. Glass Fiber Reinforced Plastic/Composite Materials, 2018(11), 15(in Chinese).
张文卿, 李浩, 隋刚. 玻璃钢/复合材料, 2018(11), 15.
43 Fox T G, Flory P J. Journal of Applied Physics, 2004, 21(6), 581.
44 Zhang Wenqi, Fan Xiaozhou, Li Yuxuan, et al. Transactions of China Electrotechnical Society, 2024, 39(5), 1510 (in Chinese).
张文琦, 范晓舟, 李宇轩, 等. 电工技术学报, 2024, 39(5), 1510.
45 Qiu Yanjun, Su Ting, Zheng Pengfei, et al. Journal of Building Materials, 2020, 23(6), 1464(in Chinese).
邱延峻, 苏婷, 郑鹏飞, 等. 建筑材料学报, 2020, 23(6), 1464.
[1] 董洪年, 杨明, 林天一, 陈沛然, 魏婷婷. 针刺密度对碳/碳复合材料力学行为影响的仿真分析[J]. 材料导报, 2025, 39(9): 23120170-6.
[2] 夏益健, 张宇, 张云升, 朱微微, 朱文轩. 磨细凝灰岩制备机制砂混凝土力学性能研究[J]. 材料导报, 2025, 39(9): 24030199-7.
[3] 钱如胜, 叶志波, 张云升, 赵儒泽, 孔德玉, 杨杨, 聂海波. 固碳强化再生粗骨料对其混凝土力学强度及体积稳定性的影响[J]. 材料导报, 2025, 39(9): 24020155-6.
[4] 燕伟, 李驰, 邢渊浩, 高瑜. 循环流化床多元固废粉煤灰基水泥胶砂固碳试验研究[J]. 材料导报, 2025, 39(9): 24010111-7.
[5] 陈港明, 王辉, 黄雪飞. 温轧对低铬FeCrAl合金显微组织及室温和高温力学性能的影响[J]. 材料导报, 2025, 39(9): 24060057-11.
[6] 陈继伟, 朱慧雯, 王海镔, 桑建权, 李艳花, 熊芬, 罗建新. 利用Hofmeister效应一步法制备离子导电耐低温强韧PVA水凝胶[J]. 材料导报, 2025, 39(9): 24050045-7.
[7] 陈永达, 胡智淇, 关岩, 常钧, 陈兵. 羟丙基甲基纤维素与硅烷偶联剂对磷酸镁基钢结构防火涂料性能的影响[J]. 材料导报, 2025, 39(8): 24010194-7.
[8] 雒亿平, 邢美光, 王德法, 易万成, 杨连碧, 薛国斌. 赤铁矿对偏高岭土基地聚物力学性能及反应机理的影响[J]. 材料导报, 2025, 39(8): 24040075-8.
[9] 李琼, 安宝峰, 苏睿, 乔宏霞, 王超群. 废玻璃粉透水混凝土物理性能及复合胶凝体系微观机理研究[J]. 材料导报, 2025, 39(8): 23100186-11.
[10] 程焱, 张弦, 苏志诚, 刘静, 吴开明. 具有TRIP效应的先进高强度钢力学性能及腐蚀行为的研究进展[J]. 材料导报, 2025, 39(8): 24020115-8.
[11] 徐焜, 黄子悦, 程云浦, 钱小妹. GNPs改性环氧复合材料等效弹性性能数值预测模型[J]. 材料导报, 2025, 39(8): 24040190-4.
[12] 董硕, 郑立森, 史奉伟, 王来, 刘哲. 钢纤维地聚物再生混凝土力学性能及强度指标换算[J]. 材料导报, 2025, 39(7): 24100219-8.
[13] 谢昭男, 陈军红, 黄西成, 邱勇. 橡胶的热老化力学性能与本构关系研究进展[J]. 材料导报, 2025, 39(7): 23120036-16.
[14] 段明翰, 覃源, 李阳, 耿凯强. 寒冷地区腈纶纤维混凝土力学性能及多层感知器神经网络预测[J]. 材料导报, 2025, 39(6): 23110143-9.
[15] 杨旭, 张天理, 朱志明, 徐连勇, 陈赓, 杨尚磊, 方乃文. 纳米颗粒对铝合金焊接凝固裂纹抑制机理及影响因素的研究进展[J]. 材料导报, 2025, 39(6): 24030070-10.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed