高分子与聚合物基复合材料 
											                         			                         			                         			                         										 
									
								         
		  							 
          							
          									  								 
        						 
      						
      					 
  					 
  					
    					 
   										
    					纳米氧化锌改性间位芳纶绝缘纸力学和热学性能的分子动力学模拟  
  					  										
						李亚莎* , 王璐敏, 庞梦昊, 田泽, 曾跃凯, 赵光辉 
					 
															
					三峡大学电气与新能源学院,湖北 宜昌 443002  
										
						 
   										
    					Molecular Dynamics Simulation of Mechanical and Thermal Properties of Nano-zinc Oxide Modified Meta-aramid Insulating Paper  
  					  					  					
						LI Yasha* , WANG Lumin, PANG Menghao, TIAN Ze, ZENG Yuekai, ZHAO Guanghui 
					 
															
						School of Electrical and New Energy, China Three Gorges University, Yichang 443002, Hubei, China    
									
				
				
					
						
							
								
									
										
								            
                        					 
												
													
													    
													    	
									 
								 
								
													
													
													    
													    		                            						                            																	    摘要  间位芳纶以其优异的热稳定性和介电性能,在电气绝缘领域中得到广泛应用。为了探究纳米氧化锌(nano-ZnO)掺杂对间位芳纶绝缘纸热学性能和力学性能的影响,本工作在Materials Studio中建立了纯间位芳纶模型以及nano-ZnO含量分别为3%(质量分数,下同)、6%、9%、12%的间位芳纶与nano-ZnO复合模型。利用分子动力学模拟计算了改性前后间位芳纶的内聚能密度、热导率、力学性能、玻璃化转变温度等参数。结果表明:在nano-ZnO掺杂量为9%时,间位芳纶的各项性能达到最佳。相较于未改性模型,其内聚能密度提升了64%,热导率提升了53%,玻璃化转变温度提升了37 K,杨氏模量和剪切模量分别提升了33%和28%。本工作可为间位芳纶绝缘纸的掺杂及性能调控提供理论依据和参考。 
																										     
													    
													    	
															 
														 
												  		
															关键词:  
																																																																间位芳纶绝缘纸  
																																																																	纳米氧化锌(nano-ZnO)  
																																																																	热学性能  
																																																																	力学性能  
																																  
															 
																																										
															Abstract:  Meta-aramid is widely used in the field of electrical insulation due to its excellent thermal stability and dielectric properties. In order to explore the effect of nano-zinc oxide (nano-ZnO) doping on the thermal and mechanical properties of meta-aramid insulating paper, a pure meta-aramid model and a composite model of meta-aramid and nano-ZnO with nano-ZnO content of 3%, 6%, 9% and 12% were established in Mate-rials Studio. Molecular dynamics simulations were used to calculate the cohesive energy density, thermal conductivity, mechanical properties, glass transition temperature and other parameters of meta-aramid before and after modification. The results show that when the doping content of nano-ZnO is 9%, the properties of meta-aramid reach the best. Compared with the unmodified model, the cohesive energy density was increased by 64%, thermal conductivity increased by 53%, the glass transition temperature has been increased by 37 K, the Young’s modulus and shear modulus increased by 33% and 28%, respectively. This work can provide a theoretical basis and reference for the doping and performance control of meta-aramid insulating paper. 
																																										
															Key words:  
																																																	meta-aramid insulation paper 
																	  																																		nano-zinc oxide(nano-ZnO) 
																	  																																		thermal property 
																	  																																		mechanical property 
																																																 
																												
														
															
															    																																																																	出版日期:   2025-08-15
															         																																	发布日期:   2025-08-15
															    															    	
															 
														 
														 														
															
																
															 
														 
																																										
															基金资助:  国家自然科学基金(51577105) 
																											    														
															
															通讯作者:  
																李亚莎,博士,三峡大学电气与新能源学院教授、博士研究生导师。目前主要从事电力系统绝缘老化与电磁场数值仿真计算等研究工作。liyasha@ctgu.edu.cn   
																													     		 
													     	 
																																									
							                        
													 
														
															引用本文:      
														
															
																														李亚莎, 王璐敏, 庞梦昊, 田泽, 曾跃凯, 赵光辉. 纳米氧化锌改性间位芳纶绝缘纸力学和热学性能的分子动力学模拟[J]. 材料导报, 2025, 39(16): 24060036-7.	
																																									     												                                                                                                        	                                                             
														 
														
															 
														
															链接本文:    
														
															
																
																	
																	https://www.mater-rep.com/CN/10.11896/cldb.24060036
																	 
																 或          
																
																https://www.mater-rep.com/CN/Y2025/V39/I16/24060036 															 
														 
													
												 
												
																																	            
									                
																														  
																 1 Han Xiancai, Sun Xin, Chen Haibo, et al. Proceedings of the CSEE , 2020, 40(14), 4371(in Chinese).High Voltage Technology , 2021, 47(7), 2396(in Chinese).Insulation Materials , 2018, 51(5), 7(in Chinese).China Southern Power Grid Technology , 2015, 9(9), 58(in Chinese).Journal of Electrical Science and Technology , 2017, 32(1), 123(in Chinese).Polymer Composites , 2020, 41, 360.Renewable and Sustainable Energy Reviews , 2022, 167, 112645.Transactions of China Electrotechnical Society , 2012, 27(5), 1(in Chinese).IEEE Transactions on Dielectrics and Electrical Insulation , 2015, 22(6), 3608. IEEE Transactions on Dielectrics and Electrical Insulation , 2015, 20(1), 346.Proceedings of the CSEE , 2022, 42(8), 3086(in Chinese).High Voltage Technology , 2012, 38(3), 691(in Chinese).Smart Power , 2017, 45(7), 9(in Chinese).Synthetic Fibers , 2021, 50(3), 30(in Chinese).Journal of Insulation Materials , 2019, 52(11), 17(in Chinese).Transactions of China Electrotechnical Society , 2023, 38(9), 2464(in Chinese).Transactions of China Electrotechnical Society , 2018, 33(19), 4618(in Chinese).High Voltage Technology , 2021, 47(9), 3134. (in Chinese)High Voltage , 2022, 5, 264.Advances in Chemical Industry , 2018, 37(2), 621(in Chinese).Modern Chemical Industry , 2024, 44(2), 76(in Chinese).Anhui Chemical Industry , 2006(1), 13(in Chinese).Journal of Composites , 2023, 41(1), 485(in Chinese).China Journal of Highway and Transportation , 2017, 30(7), 25(in Chinese).Transactions of China Electrotechnical Society , 2016, 31(12), 1(in Chinese).Insulation Materials , 2019, 52(6), 79(in Chinese).High Voltage Technology , 2023, 49(12), 4890(in Chinese).Energies , 2017, 10(9), 1377.Biomacromole-cules , 2010, 11(9), 2300.Insulation Materials , 2019, 52(7), 22(in Chinese)The Journal of Adhesion , 2021, 97(4), 346.ACS Applied Polymer Materials , 2022, 4(4), 2401.Journal of Tropical Crops , 2022, 43(11), 2215(in Chinese).Insulation Materials , 2019, 52(11), 55(in Chinese).China Paper Making , 2022, 41(11), 1(in Chinese).Acta Chemologica Sinica , 2020, 71(11), 5159(in Chinese).Application of Engineering Plastics , 2023, 51(9), 32. (in Chinese).High Voltage , 2023, 8(3), 599.High Voltage Technology , 2018, 44(3), 740(in Chinese).Polymers , 2018, 10, 1348.Glass Fiber Reinforced Plastic/Composite Materials , 2018(11), 15(in Chinese).Journal of Applied Physics , 2004, 21(6), 581.Transactions of China Electrotechnical Society , 2024, 39(5), 1510 (in Chinese).Journal of Building Materials , 2020, 23(6), 1464(in Chinese). 
															   
																													
									             
									            									            												
											
														
															
																
																	
																																																																									
																				No Suggested Reading articles found!  
																																			
																 
															 
														
												 
											
												
											    	
											        	Viewed  
													
											        	 
											      	
												        
												        	Full text 
 
											        	
												        	
												        	
												          	
														 
													 
													
												         
													
												        
												        	Abstract 
 
												        
															
															
															
												         
													 
													
												         
													
												        Cited 
												        	
												         
													 
													
												         
													
													      
													    Shared     
												  	
													     
											  		
													      
													    Discussed