Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 24110064-8    https://doi.org/10.11896/cldb.24110064
  光热调控超材料的应用与创新 |
柔性电响应动态热辐射调控材料研究进展
解伟荣, 周涵*
上海交通大学金属基复合材料国家重点实验室, 上海 200240
A Review of Flexible Materials for Electroresponsive Dynamic Thermal Radiation Regulation
XIE Weirong, ZHOU Han*
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200240, China
下载:  全 文 ( PDF ) ( 37593KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 所有温度高于0 K的物体都会产生红外热辐射,这种辐射特性与其发射率密切相关,固定的发射率使多数物体只能呈现单一的热辐射特性。而实际应用场景中,为适应不同环境和功能要求,动态调控物体的热辐射特性至关重要。柔性电响应动态热辐射调控材料不受环境条件制约,调控幅度高,且轻质、灵活、便携,在使用和存储中都具有突出优势。本文总结了导电聚合物、碳基材料、可逆金属电沉积等几种典型的柔性电响应动态热辐射调控材料研究进展,介绍了柔性电响应动态热辐射调控器件的应用前景,并指明了其挑战及未来发展趋势。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
解伟荣
周涵
关键词:  柔性  电致变色  热辐射调控  红外发射率调控    
Abstract: All objects whose temperatures exceed absolute zero emit infrared thermal radiation which relates closely to the objects' emissivities. Due to the constant emissivity, most objects can only present a single thermal function. However, in practical applications, dynamic thermal radiation regulation is of great importance to meet the requirements for different environment and functions. Flexible and electroresponsively emissivity-dynamically-modulatable materials exhibit not only environment-condition-independent high tunability, but also favorable properties such as lightweight, flexibility, and portability, thereby are superior in both usage and storage. This review summarizes the research progress of some typical kinds of flexible and electroresponsively emissivity-dynamically-modulatable materials including conductive polymers, carbon-based materials, and reversibly electrodeposited metals, and outlines the applicative potential of flexible and electroresponsively thermal-radiation-dynamically-regulating devices. The paper ends with a discussion about the challenges and the future trends.
Key words:  flexiblility    electrochromism    thermal radiation regulation    infrared emissivity modulation
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TB33  
基金资助: 国家自然科学基金(52172120)
通讯作者:  *周涵,博士,上海交通大学材料学院及金属基复合材料国家重点实验室教授、博士研究生导师。主要研究方向为仿生材料与智能材料、超材料、热调控材料。hanzhou_81@sjtu.edu.cn   
作者简介:  解伟荣,上海交通大学材料学院硕士研究生。主要研究领域为电致变动态热辐射调控材料。
引用本文:    
解伟荣, 周涵. 柔性电响应动态热辐射调控材料研究进展[J]. 材料导报, 2025, 39(1): 24110064-8.
XIE Weirong, ZHOU Han. A Review of Flexible Materials for Electroresponsive Dynamic Thermal Radiation Regulation. Materials Reports, 2025, 39(1): 24110064-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24110064  或          https://www.mater-rep.com/CN/Y2025/V39/I1/24110064
1 Wei H, Gu J X, Ren F F, et al. Small, 2021, 17(35), 2100446.
2 Tang K C, Dong K C, Li J C, et al. Science, 2021, 374(6574), 1504.
3 Wang S C, Jiang T Y, Meng Y, et al. Science, 2021, 374(6574), 1501.
4 Zhang X A, Yu S J, Xu B B, et al. Science, 2019, 363(6427), 619.
5 Li X Q, Ma B R, Dai J Y, et al. Science Advances, 2021, 7(51), 7906.
6 Shao Z W, Huang A B, Cao C C, et al. Nature Sustainability, 2024, 7(6), 796.
7 Jia Y, Liu D Q, Chen D S, et al. Nature Communications, 2023, 14(1), 5087.
8 Xu C Y, Stiubianu G T, Gorodetsky A A. Science, 2018, 359(6383), 1495.
9 Leung E M, Escobar M C, Stiubianu G T, et al. Nature Communications, 2019, 10, 1947.
10 Gong H, Li W Z, Fu G X, et al. Journal of Materials Chemistry A, 2022, 10, 6269.
11 Wang B, Zhang W, Zhao F F, et al. Nano Materials Science, 2023, 5(4), 369.
12 Li Z Q, Chen W. Materials Chemistry Frontiers, 2021, 5(17), 6315.
13 Song S S, Xu G P, Wang B, et al. Synthetic Metals, 2021, 278, 116822.
14 Niu J L, Zhang J Q, Wang Y, et al. Electrochimica Acta, 2022, 435, 141274.
15 Lu F F, Tan P Y, Ren D F, et al. Dyes and Pigments, 2022, 200, 110179.
16 Xu G P, Zhang L P, Wang B, et al. Solar Energy Materials and Solar Cells, 2020, 208, 110356.
17 Zhang L P, Wang B, LI X B, et al. Journal of Materials Chemistry C, 2019, 7(32), 9878.
18 Xu G P, Zhang L P, Wang B, et al. Journal of Materials Chemistry C, 2020, 8(38), 13336.
19 Wang B, Xu G P, Song S S, et al. Electrochimica Acta, 2021, 390, 138891.
20 Xu G P, Wang B, Song S S, et al. Chemical Engineering Journal, 2021, 422, 130064.
21 Xu G P, Wang B, Song S S, et al. Advanced Materials Technologies, 2022, 7(7), 2101381.
22 Qin T, Gao X H, Zhang P, et al. Organic Electronics, 2023, 113, 106716.
23 Wang B, Xu G P, Song S S, et al. Chemical Engineering Journal, 2022, 445, 136819.
24 Pu N, Ghosh P, Li Q. Journal of Physics Conference Series, 2024, 2706(1), 012058.
25 Banerjee D, Hallberg T, Chen S, et al. Cell Reports Physical Science, 2023, 4(2), 101274.
26 Brooke R, Mitraka E, Sardar S, et al. Journal of Materials Chemistry C, 2017, 5(23), 5824.
27 Salhoglu O, Uzlu H B, Yakar O, et al. Nano Letters, 2018, 18(7), 4541.
28 Sun Y, Wang Y Y, Zhan C, et al. ACS Applied Materials & Interfaces, 2019, 11(14), 13538.
29 Ergoktas M S, Bakan G, Steiner P, et al. Nano Letters, 2020, 20(7), 5346.
30 Ergoktas M S, Bakan G, Kovalska E, et al. Nature Photonics, 2021, 15(7), 493.
31 Yu X X, Bakan G, Guo H Y, et al. ACS Nano, 2023, 17(12), 11583.
32 Wang F H, Itkis M E, Bekyarova E, et al. Nature Photonics, 2013, 7(6), 460.
33 Sun Y, Chang H C, Hu J, et al. Advanced Optical Materials, 2021, 9(3), 2001216.
34 Shi G Y, Fan H W, Wang W X, et al. Materials Today Chemistry, 2024, 39, 102166.
35 Maniyara R A, Rodrigo D, Yu R, et al. Nature Photonics, 2019, 13(5), 328.
36 Campos A, Troc N, Cottancin E, et al. Nature Physics, 2019, 15(3), 275.
37 Li M Y, Liu D Q, Cheng H F, et al. Science Advances, 2020, 6(22), eaba3494.
38 Li M Y, Liu D Q, Cheng H F, et al. Journal of Materials Chemistry C, 2020, 8(25), 8538.
39 Rao Y F, Dai J Y, Sui C X, et al. ACS Energy Letters, 2021, 6(11), 3906.
40 Zhao J, Zhang S L, Chang S, et al. Chemical Engineering Journal, 2024, 480, 148010.
41 Lu F F, Shi D N, Tan P Y, et al. Chemical Engineering Journal, 2022, 450, 138324.
42 Sui C X, Pu J K, Chen T H, et al. Nature Sustainability, 2023, 6(4), 428.
43 Zhao X Y, Sheng M F, Tang H J, et al. ACS Applied Materials & Interfaces, 2024, 16(32), 42481.
44 Chen T H, Hong Y, Fu C T, et al. PNAS Nexus, 2023, 2(6), 165.
45 Fan Q C, Fan H W, Han H Z, et al. Advanced Functional Materials, 2024, 34(16), 2310858.
46 Gao J L, Zhou J L, Yuan M, et al. ACS Applied Materials & Interfaces, 2024, 16(23), 30421.
47 Li Z Q, Chao X J, Balilonda A, et al. InfoMat, 2023, 5(6), e12418.
48 Fan H W, Wei W, Hou C Y, et al. Journal of Materials Chemistry C, 2023, 11(22), 7183.
49 Li W Z, Bai T, Fu G X, et al. Solar Energy Materials and Solar Cells, 2022, 240, 111709.
[1] 李泽榕, 毛晨雨, 孙涛, 林煌, 王佳明, 陈步超, 汤世伟, 王维燕. 聚合物添加剂工程制备高性能银栅格上柔性钙钛矿太阳能电池[J]. 材料导报, 2025, 39(4): 24040251-5.
[2] 刘海龙, 芶立. 用于ECG电极的长期稳定性评估方法:以皮革电极为例[J]. 材料导报, 2025, 39(4): 23100257-6.
[3] 侯明玥, 姚日晖, 罗东向, 郑华, 刘贤哲, 黎振超, 蔡炜, 宁洪龙, 彭俊彪. 可穿戴电子用前驱体型银墨水研究进展[J]. 材料导报, 2025, 39(4): 23110204-11.
[4] 戴江炫, 姬文辉, 卢嘉铖, 谢瑞杰, 李林. 汗液发电:原理、器件结构及应用[J]. 材料导报, 2025, 39(2): 24030268-16.
[5] 赵思名, 郭震宇, 黄娅, 蓝帆, 赵卓菁, 李润, 张如范. 面向建筑节能的新型光热调控技术:主动电致变色与被动辐射制冷[J]. 材料导报, 2025, 39(1): 24100008-18.
[6] 张文霞, 贾岩, 程海峰, 刘东青. 全固态电致变色器件研究进展[J]. 材料导报, 2025, 39(1): 24100119-11.
[7] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[8] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[9] 钮政, 罗希, 徐能能, 陈刚, 乔锦丽. 聚乙烯醇基凝胶电解质的制备及在储能器件中的应用[J]. 材料导报, 2024, 38(8): 23040146-11.
[10] 王海萍, 陈必华, 陶益杰, 黄凯兵, 张世国. 聚醚接枝丙烯酸树脂基凝胶聚合物电解质的制备及在电致变色器件中的应用[J]. 材料导报, 2024, 38(7): 22090034-5.
[11] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[12] 陈渊泽, 牛春晖, 王雷, 杨明庆, 张世玉, 吕勇. 聚苯胺红外电致变色器件研究进展[J]. 材料导报, 2024, 38(5): 22090259-10.
[13] 苏秉尧, 王斌, 侯林伟, 王恒, 赵建伟, 贺辛亥, 袁亚蓉. 柔性碳/三聚氰胺复合泡沫的电磁屏蔽与传感特性[J]. 材料导报, 2024, 38(5): 22070159-7.
[14] 白忠薛, 王学川, 李佳俊, 冯宇宇, 白波涛, 黄梦晨, 岳欧阳, 刘新华. 生物质基导电水凝胶的研究进展[J]. 材料导报, 2024, 38(4): 22090215-14.
[15] 刘玉慧, 柳仕林, 吴聪影, 吴琪琳. 基于碳材料的多维度柔性应变/压力传感器的研究进展[J]. 材料导报, 2024, 38(4): 22070258-9.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed