Abstract: All objects whose temperatures exceed absolute zero emit infrared thermal radiation which relates closely to the objects' emissivities. Due to the constant emissivity, most objects can only present a single thermal function. However, in practical applications, dynamic thermal radiation regulation is of great importance to meet the requirements for different environment and functions. Flexible and electroresponsively emissivity-dynamically-modulatable materials exhibit not only environment-condition-independent high tunability, but also favorable properties such as lightweight, flexibility, and portability, thereby are superior in both usage and storage. This review summarizes the research progress of some typical kinds of flexible and electroresponsively emissivity-dynamically-modulatable materials including conductive polymers, carbon-based materials, and reversibly electrodeposited metals, and outlines the applicative potential of flexible and electroresponsively thermal-radiation-dynamically-regulating devices. The paper ends with a discussion about the challenges and the future trends.
1 Wei H, Gu J X, Ren F F, et al. Small, 2021, 17(35), 2100446. 2 Tang K C, Dong K C, Li J C, et al. Science, 2021, 374(6574), 1504. 3 Wang S C, Jiang T Y, Meng Y, et al. Science, 2021, 374(6574), 1501. 4 Zhang X A, Yu S J, Xu B B, et al. Science, 2019, 363(6427), 619. 5 Li X Q, Ma B R, Dai J Y, et al. Science Advances, 2021, 7(51), 7906. 6 Shao Z W, Huang A B, Cao C C, et al. Nature Sustainability, 2024, 7(6), 796. 7 Jia Y, Liu D Q, Chen D S, et al. Nature Communications, 2023, 14(1), 5087. 8 Xu C Y, Stiubianu G T, Gorodetsky A A. Science, 2018, 359(6383), 1495. 9 Leung E M, Escobar M C, Stiubianu G T, et al. Nature Communications, 2019, 10, 1947. 10 Gong H, Li W Z, Fu G X, et al. Journal of Materials Chemistry A, 2022, 10, 6269. 11 Wang B, Zhang W, Zhao F F, et al. Nano Materials Science, 2023, 5(4), 369. 12 Li Z Q, Chen W. Materials Chemistry Frontiers, 2021, 5(17), 6315. 13 Song S S, Xu G P, Wang B, et al. Synthetic Metals, 2021, 278, 116822. 14 Niu J L, Zhang J Q, Wang Y, et al. Electrochimica Acta, 2022, 435, 141274. 15 Lu F F, Tan P Y, Ren D F, et al. Dyes and Pigments, 2022, 200, 110179. 16 Xu G P, Zhang L P, Wang B, et al. Solar Energy Materials and Solar Cells, 2020, 208, 110356. 17 Zhang L P, Wang B, LI X B, et al. Journal of Materials Chemistry C, 2019, 7(32), 9878. 18 Xu G P, Zhang L P, Wang B, et al. Journal of Materials Chemistry C, 2020, 8(38), 13336. 19 Wang B, Xu G P, Song S S, et al. Electrochimica Acta, 2021, 390, 138891. 20 Xu G P, Wang B, Song S S, et al. Chemical Engineering Journal, 2021, 422, 130064. 21 Xu G P, Wang B, Song S S, et al. Advanced Materials Technologies, 2022, 7(7), 2101381. 22 Qin T, Gao X H, Zhang P, et al. Organic Electronics, 2023, 113, 106716. 23 Wang B, Xu G P, Song S S, et al. Chemical Engineering Journal, 2022, 445, 136819. 24 Pu N, Ghosh P, Li Q. Journal of Physics Conference Series, 2024, 2706(1), 012058. 25 Banerjee D, Hallberg T, Chen S, et al. CellReports Physical Science, 2023, 4(2), 101274. 26 Brooke R, Mitraka E, Sardar S, et al. Journal of Materials Chemistry C, 2017, 5(23), 5824. 27 Salhoglu O, Uzlu H B, Yakar O, et al. Nano Letters, 2018, 18(7), 4541. 28 Sun Y, Wang Y Y, Zhan C, et al. ACS Applied Materials & Interfaces, 2019, 11(14), 13538. 29 Ergoktas M S, Bakan G, Steiner P, et al. Nano Letters, 2020, 20(7), 5346. 30 Ergoktas M S, Bakan G, Kovalska E, et al. Nature Photonics, 2021, 15(7), 493. 31 Yu X X, Bakan G, Guo H Y, et al. ACS Nano, 2023, 17(12), 11583. 32 Wang F H, Itkis M E, Bekyarova E, et al. Nature Photonics, 2013, 7(6), 460. 33 Sun Y, Chang H C, Hu J, et al. Advanced Optical Materials, 2021, 9(3), 2001216. 34 Shi G Y, Fan H W, Wang W X, et al. Materials Today Chemistry, 2024, 39, 102166. 35 Maniyara R A, Rodrigo D, Yu R, et al. Nature Photonics, 2019, 13(5), 328. 36 Campos A, Troc N, Cottancin E, et al. Nature Physics, 2019, 15(3), 275. 37 Li M Y, Liu D Q, Cheng H F, et al. Science Advances, 2020, 6(22), eaba3494. 38 Li M Y, Liu D Q, Cheng H F, et al. Journal of Materials Chemistry C, 2020, 8(25), 8538. 39 Rao Y F, Dai J Y, Sui C X, et al. ACS Energy Letters, 2021, 6(11), 3906. 40 Zhao J, Zhang S L, Chang S, et al. ChemicalEngineering Journal, 2024, 480, 148010. 41 Lu F F, Shi D N, Tan P Y, et al. Chemical Engineering Journal, 2022, 450, 138324. 42 Sui C X, Pu J K, Chen T H, et al. Nature Sustainability, 2023, 6(4), 428. 43 Zhao X Y, Sheng M F, Tang H J, et al. ACS Applied Materials & Interfaces, 2024, 16(32), 42481. 44 Chen T H, Hong Y, Fu C T, et al. PNAS Nexus, 2023, 2(6), 165. 45 Fan Q C, Fan H W, Han H Z, et al. Advanced Functional Materials, 2024, 34(16), 2310858. 46 Gao J L, Zhou J L, Yuan M, et al. ACS Applied Materials & Interfaces, 2024, 16(23), 30421. 47 Li Z Q, Chao X J, Balilonda A, et al. InfoMat, 2023, 5(6), e12418. 48 Fan H W, Wei W, Hou C Y, et al. Journal of Materials Chemistry C, 2023, 11(22), 7183. 49 Li W Z, Bai T, Fu G X, et al. Solar Energy Materials and Solar Cells, 2022, 240, 111709.