Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 24100229-10    https://doi.org/10.11896/cldb.24100229
  光热调控超材料的应用与创新 |
二氧化钒智能热控涂层光学结构原理及研究进展
范浩博, 豆书亮*, 李垚*
哈尔滨工业大学复合材料与结构研究所, 哈尔滨 150001
Principle and Research Progress of Optical Structure of Vanadium Dioxide Intelligent Thermal Control Coating
FAN Haobo, DOU Shuliang*, LI Yao*
Center for Composite Materials and Structure, Harbin Institute of Technology, Harbin 150001, China
下载:  全 文 ( PDF ) ( 37722KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 传统热控涂层发射率固定,难以满足我国航天事业的快速发展,VO2智能热控涂层具有无源自适应和可设计性强等优点,成为国内外研究热点。本文从VO2金属-绝缘体相变特性出发,通过分析VO2智能热控涂层红外波段发射率调控机理,综述了法布里-珀罗(F-P)谐振腔、超表面、光子晶体和纳米复合薄膜四种结构的VO2智能热控涂层光学设计方法和研究进展,提取在工程应用中导致VO2智能热控涂层的空间稳定性降低的关键因素,对VO2智能热控涂层的未来发展趋势进行展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
范浩博
豆书亮
李垚
关键词:  VO2  智能热控涂层  金属-绝缘体相变  光学设计  空间稳定性    
Abstract: The traditional thermal control coating with fixed emissivity is difficult to meet the rapid development of China's aerospace industry, and the VO2 intelligent thermal control coating, with the advantages of passive adaptation and strong designability, has become a hot spot of research at home and abroad. In this paper, based on the phase transition characteristics of VO2 metal-insulator, the optical design methods and research progress of VO2 intelligent thermal control coatings with four structures of F-P resonant cavity, metasurface, photonic crystal and nanocomposite film are reviewed by analyzing the emissivity regulation mechanism of VO2 intelligent thermal control coatings in infrared band. It extracts the key factors affecting the engineering application of VO2 smart thermal control coatings due to the decrease in spatial stability, and looks forward to the future development trends of VO2 smart thermal control coatings.
Key words:  VO2    intelligent thermal control coating    metal-insulator phase change    optical design    spatial stability
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TQ135.1  
基金资助: 国家自然科学基金(52272291)
通讯作者:  *豆书亮,哈尔滨工业大学航天学院副教授、博士研究生导师。入选中国科协青年人才托举工程,主要从事智能光热调控超材料研究,研发了VO2智能热控涂层。dousl@hit.edu.cn;李垚,哈尔滨工业大学航天学院复合材料与结构研究所教授、博士研究生导师,国家级高层次人才。主要从事光热调控材料的研究,研发了多种智能热控涂层,完成了电致变色智能热控涂层的国内首次空间试验。yaoli@hit.edu.cn   
作者简介:  范浩博,哈尔滨工业大学航天学院硕士研究生,在豆书亮副教授的指导下进行研究。目前主要研究领域为VO2智能热控涂层。
引用本文:    
范浩博, 豆书亮, 李垚. 二氧化钒智能热控涂层光学结构原理及研究进展[J]. 材料导报, 2025, 39(1): 24100229-10.
FAN Haobo, DOU Shuliang, LI Yao. Principle and Research Progress of Optical Structure of Vanadium Dioxide Intelligent Thermal Control Coating. Materials Reports, 2025, 39(1): 24100229-10.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100229  或          https://www.mater-rep.com/CN/Y2025/V39/I1/24100229
1 Pan Y X, Wang C. Bulletin of National Natural Science Foundation of China, 2021, 35(2), 181 (in Chinese).
潘永信, 王赤. 中国科学基金, 2021, 35(2), 181.
2 Ye P J, Zou L Y, Wang D Y, et al. Space International, 2018(10), 4 (in Chinese).
叶培建, 邹乐洋, 王大轶, 等. 国际太空, 2018(10), 4.
3 Bai G, Xiao W, Gao F, et al. Aerospace Materials & Technology, 2021, 51 (5), 41 (in Chinese).
白刚, 肖伟, 高峰, 等. 宇航材料工艺, 2021, 51 (5), 41.
4 Shen Z C, Ouyang X P, Gao H. Aerospace Materials & Technology, 2021, 51(5), 1 (in Chinese).
沈自才, 欧阳晓平, 高鸿. 宇航材料工艺, 2021, 51(5), 1.
5 Liu D Q, Cheng H F, Zheng W W, et al. Journal of National University of Defense Technology, 2012, 34(2), 145 (in Chinese).
刘东青, 程海峰, 郑文伟, 等. 国防科技大学学报, 2012, 34(2), 145.
6 Wei H, Gu J X, Zhao T, et al. Light-Science & Applications, 2024, 13, 54.
7 Ren F F, Wei H, Gu J X, et al. ACS Applied Electronic Materials, 2020, 2, 2203.
8 Chen Y Y, Zhao T, Chang Y K, et al. Next Energy, 2024, 3, 100046.
9 Dou S L, Zhang W Y, Ren F F, et al. Materials Chemistry and Physics, 2021, 259, 124042.
10 Zhao T, Chen Y Y, Gu J X, et al. ACS Applied Materials & Interfaces, 2024, 16, 52153.
11 Geng C C, Zhang M, Wei H, et al. Solar Energy Materials and Solar Cells, 2024, 272, 112892.
12 Geng C C, Dou S L, Zhao J P, et al. Applied Surface Science, 2022, 592, 153267.
13 Dou S L, Zhao J P, Zhang W Y, et al. ACS Applied Materials & Interfaces, 2020, 12, 7302.
14 Dou S L, Zhang W Y, Wang Y M, et al. Materials Chemistry and Physics, 2018, 215, 91.
15 Dou S L, Zhang W Y, Wang Y M, et al. Materials Research Express, 2019, 6, 016408.
16 Dou S L, Wang Y, Zhang X, et al. Solar Energy Materials and Solar Cells, 2017, 160, 164.
17 Ren F F, Guan H, Wei H, et al. Next Energy, 2023, 1, 100064.
18 Wei H, Yan X, Gu J X, et al. Solar Energy Materials and Solar Cells, 2022, 241, 111728.
19 Liang S H, Guan H, Zhang H N, et al. Chemical Engineering Journal, 2024, 489, 151025.
20 Liang S H, Guan H, Zhang H N, et al. ACS Applied Materials & Interfaces, 2024, 16, 21024.
21 Ren F F, Gu J X, Wei H, et al. Research, 2021, 2021, 9804183.
22 Wei H, Gu J X, Ren F F, et al. Laser & Photonics Reviews, 2022, 16, 2200383.
23 Guan H, Ren F F, Liang S H, et al. Laser & Photonics Reviews, 2023, 17, 2200653.
24 Wei H, Gu J X, Ren F F, et al. Small, 2021, 17, 2100446.
25 Benkahoul M, Chaker M, Margot J, et al. Solar Energy Materials and Solar Cells, 2011, 95, 3504.
26 Beaini R, Baloukas B, Loquai S, et al. Solar Energy Materials and Solar Cells, 2020, 205, 110260.
27 Gu J X, Wei H, Zhao T, et al. ACS Applied Materials & Interfaces, 2024, 16, 10352.
28 Gu J X, Wei H, Ren F F, et al. ACS Applied Materials & Interfaces, 2022, 14, 2683.
29 Geng C C, Chen Y Y, Wei H, et al. Advanced Functional Materials, 2024, 2410819.
30 Wang X, Cao Y Z, Zhang Y Z, et al. Applied Surface Science, 2015, 344, 230.
31 Kim H, Cheung K, Auyeung R C, et al. Scientific Reports, 2019, 9, 11329.
32 Wang S C, Jiang T Y, Meng Y, et al. Science, 2021, 374, 1501.
33 Wu B Y, Zhang D R, Wang C H, et al. Physical Chemistry Chemical Physics, 2023, 25, 20302.
34 Xie B W, Zhang W J, Zhao J M, et al. Optics Express, 2022, 30, 34314.
35 Xu Q J, Ji H N, Ren Y, et al. Nanomaterials, 2024, 14, 1348.
36 Li M Y, Cheng Y L, Fang C Q, et al. Solar Energy Materials and Solar Cells, 2024, 275, 113040.
37 Sun K, Riedel C A, Urbani A, et al. ACS Photonics, 2018, 5, 2280.
38 Sun K, Xiao W, Wheeler C, et al. Nanophotonics, 2022, 11, 4101.
39 Tang K C, Dong K C, Li J C, et al. Science, 2021, 374, 1504.
40 Yang J L, Li Q Y, Liu S Q, et al. Advanced Photonics, 2024, 6 (4), 046006.
41 Bhupathi S, Wang S C, Wang G Y, et al. Nanophotonics, 2024, 13, 711.
42 Liu Y, Tian Y P, Liu X J, et al. Applied Physics Letters, 2022, 120, 171704.
43 Ou Y Y, Ji H N, Wang Y, et al. Solar Energy, 2024, 279, 112808.
44 Wu S H, Chen M K, Barako Michael T, et al. Optica, 2017, 4, 1390.
45 Kim M Y, Lee D, Yang Y, et al. Opto-Electronic Advances, 2021, 4, 200006.
46 Kort-Kamp W J, Kramadhati S, Azad A K, et al. ACS Photonics, 2018, 5, 4554.
47 Ono M, Chen K F, Li W, et al. Optics Express, 2018, 26, A777.
48 Zhang W W, Qi H, Sun A T, et al. Optics Express, 2020, 28, 20609.
49 Xie B W, Zhang W J, Zhao J M, et al. Applied Thermal Engineering, 2024, 236, 121751.
50 Gao J, Zhang H N, Han X G, et al. Solar Energy Materials and Solar Cells, 2024, 276, 113082.
51 Wu X Y, Y L, Weng X L, et al. Nano Letters, 2021, 21, 3908.
52 Wang Z Y, Liang J R, Lei D Y, et al. Applied Energy, 2024, 369, 123619.
53 Hu X, Li W T, Fu Q W, et. Acta Materiae Compositae Sinica, 2023, 40(8), 4587( in Chinese).
呼啸, 李文婷, 付勍玮, 等. 复合材料学报, 2023, 40(8), 4587.
54 Huang J C, Zhang X K, Yu X Y, et al. Renewable Energy, 2024, 224, 120208.
55 Li J C, Dong K C, Zhang T C, et al. Joule, 2023, 7, 2552.
56 Haddad E, Kruzelecky R V, Murzionak P, et al. In: Conference Record of the International Conference on Environmental Systems. Sydney, 2020, pp. 210.
57 Taylor S, Boman N, Chao J, et al. Applied Thermal Engineering, 2021, 199, 117561.
58 Madiba I G, Khanyile B S, Mabakachaba B M, et al. Materials Today: Proceedings, 2022, 53, 429.
59 Zhang H T, Guo L, Stone G, et al. Advanced Functional Materials, 2016, 26, 6612.
60 Ko C Y, Ramanathan S. Journal of Applied Physics, 2008, 103, 106104.
61 Mabakachaba B M, Madiba I G, Khanyile B S, et al. Materials Today: Proceedings, 2022, 53, 399.
[1] 谢忠洲, 李钟昊, 逯浩, 王莹, 刘永生. 纳米复合结构对VO2相变特性的影响[J]. 材料导报, 2022, 36(8): 20080150-10.
[2] 张堃, 袁新强, 王丹, 梅晶, 蒋鹏, 张伟. VO2(M)粉体合成与表征[J]. 材料导报, 2022, 36(13): 21010087-5.
[3] 侯典心,路 远,刘志伟,胡 杰. 基于外加热激励源的中红外激光辐照VO2薄膜温升研究[J]. 《材料导报》期刊社, 2017, 31(24): 91-95.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed