Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 24100143-13    https://doi.org/10.11896/cldb.24100143
  光热调控超材料的应用与创新 |
木基光热转换功能材料的应用研究进展
党奔, 陈志俊*
东北林业大学材料科学与工程学院, 哈尔滨 150040
Research Progress of the Application of Wood-based Photothermal Conversion Functional Materials
DANG Ben, CHEN Zhijun*
College of Materials Science and Engineering, Northeast Forestry University, Harbin 150040, China
下载:  全 文 ( PDF ) ( 70221KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 随着工业的发展和化石燃料的消耗,气候变化、能源短缺、环境污染等问题日益严峻。目前,使用绿色、环保的能源和资源开发可持续的新型材料已成为全球发展的共同趋势。光热转换技术可以将太阳能转换成热能并应用于诸多领域,已成为解决这些问题的重要途径之一。木材是地球上极丰富的可再生资源之一,凭借储量丰富、可再生、可降解、简单易得等特点得到了研究人员的广泛关注。在“双碳”战略目标的背景下,将光热转换技术和木材进行有效结合,不仅可以提高太阳能的利用效率,还能实现林木资源低碳、高效的利用。本文介绍了木基光热转换材料的作用机理,简述了光热转换技术、木材构建光热转换材料在当前取得的进展,概述了木基光热转换材料在水处理、产电、产氢、相变储能等领域的应用研究现状,以期为相关研究提供参考和借鉴,推动可持续发展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
党奔
陈志俊
关键词:  木材  太阳能  光热转换  功能材料  水处理    
Abstract: With the development of industry and the consumption of fossil fuels, climate change, energy shortage, environmental pollution and other problems have become increasingly serious. It has become a global development trend to achieve sustainable development by developing green, environmentally friendly and renewable new materials. Photothermal conversion technology, can convert solar energy into heat energy and be used in many fields, has become one of the important methods to solve these crises. Wood is one of the most abundant renewable resources on the earth, and has been widely concerned by researchers because of its abundant reserves, renewable, degradable, simple and easy to obtain. The effective combination of wood and photothermal conversion can improve the utilization efficiency of solar energy and forest resources under the carbon neutralization strategy. This review introduces the mechanism of wood-based photothermal conversion materials, describes the current progress of photothermal conversion technology and wood construction of photothermal conversion materials, and gives a summary on the application of wood-based photothermal conversion materials in water treatment, electricity generation, hydrogen generation, phase change energy storage based on state-of-the-art researches, in order to provide reference and inspiration for related research and promote sustainable deve-lopment.
Key words:  wood    solar energy    photothermal conversion    functional material    water treatment
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  O647  
基金资助: 国家自然科学基金(32171716)
通讯作者:  *陈志俊,博士,东北林业大学教授、博士研究生导师,英国皇家化学会会士,英国巴斯大学客座教授,材料学院副院长、黑龙江省生物质先进材料联合实验室(国际合作)主任,入选国家级青年人才。研究方向为林木资源的光理化特性解析与高效转化,部分研究成果已经转化与落地。chenzhijun@nefu.edu.cn   
作者简介:  党奔,2018年6月于东北林业大学获得工学学士学位。现为东北林业大学材料科学与工程学院博士研究生,在陈志俊教授的指导下进行研究。目前主要研究领域为木基光热转换功能材料。
引用本文:    
党奔, 陈志俊. 木基光热转换功能材料的应用研究进展[J]. 材料导报, 2025, 39(1): 24100143-13.
DANG Ben, CHEN Zhijun. Research Progress of the Application of Wood-based Photothermal Conversion Functional Materials. Materials Reports, 2025, 39(1): 24100143-13.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100143  或          https://www.mater-rep.com/CN/Y2025/V39/I1/24100143
1 Harris N L, Gibbs D A, Baccini A, et al. Nature Climate Change, 2021, 11(3), 234.
2 Schubert M, Panzarasa G, Burgert I. Chemical Reviews, 2023, 123(5), 1889.
3 Yu Z L, Qin B, Ma Z Y, et al. Advanced Materials, 2021, 33(28), 2001086.
4 Babin A, Vaneeckhaute C, Iliuta M C. Biomass and Bioenergy, 2021, 146, 105968.
5 Jiang F, Li T, Li Y, et al. Advanced Materials, 2018, 30(1), 1703453.
6 Berglund L A, Burgert I. Advanced Materials, 2018, 30(19), 1704285.
7 Rowell R M. Wood Material Science & Engineering, 2006, 1(1), 29.
8 Gérardin P. Annals of Forest Science, 2016, 73(3), 559.
9 Moon R J, Martini A, Nairn J, et al. Chemical Society Reviews, 2011, 40(7), 3941.
10 Chen C, Berglund L, Burgert I, et al. Advanced Materials, 2021, 33(28), 2006207.
11 Yang H, Chao W, Wang S, et al. Energy Storage Materials, 2019, 18, 15.
12 Montanari C, Li Y, Chen H, et al. ACS Applied Materials & Interfaces, 2019, 11(22), 20465.
13 Ramage M H, Burridge H, Busse-Wicher M, et al. Renewable and Sustainable Energy Reviews, 2017, 68, 333.
14 Song J, Chen C, Zhu S, et al. Nature, 2018, 554(7691), 224.
15 Pramreiter M, Nenning T, Malzl L, et al. Nature Reviews Materials, 2023, 8(4), 217.
16 Zhou H, Wen D, Hao X, et al. Chemical Engineering Journal, 2023, 451, 138308.
17 Chen X, Zhu X, He S, et al. Advanced Materials, 2021, 33(28), 2001240.
18 Jiang Q, Singamaneni S. Joule, 2017, 1(3), 429.
19 Huang C, Dai W, Deng S, et al. Environmental Chemistry Letters, 2024, 22(2), 47.
20 Dong Y, Tan Y, Wang K, et al. Water Research, 2022, 223, 119011.
21 Zhu M, Song J, Li T, et al. Advanced Materials, 2016, 28(26), 5181.
22 Wang S, Li L, Zha L, et al. Nature Communications, 2023, 14(1), 2827.
23 Ritter M, Stricker L, Burgert I, et al. Carbohydrate Polymers, 2024, 339, 122166.
24 Tang Q, Yuan X, Zou M, et al. Advanced Materials, 2024, 36(14), 2306593.
25 Jia C, Chen C, Mi R, et al. ACS Nano, 2019, 13(9), 9993.
26 Xia Q, Chen C, Li T, et al. Science Advances, 7(5), eabd7342.
27 Li T, Zhai Y, He S, et al. Science, 2019, 364(6442), 760.
28 Chen G, Chen C, Pei Y, et al. Chemical Engineering Journal, 2020, 383, 123109.
29 Chen Q, Chen S, Fan H, et al. Chemical Engineering Journal, 2024, 494, 153219.
30 Gan W, Chen C, Kim H-T, et al. Nature Communications, 2019, 10(1), 5084.
31 Zhao X, Liu Y, Zhao L, et al. Nature Sustainability, 2023, 6(3), 30.
32 Chen C, Hu L. Advanced Materials, 2021, 33(28), 2002890.
33 Kong W, Chen C, Chen G, et al. Small, 2021, 17(40), 2008200.
34 Ram F, Garemark J, Li Y, et al. ACS Nano, 2022, 16(10), 15805.
35 Chen G, Li T, Chen C, et al. Advanced Functional Materials, 2019, 29(44), 1902772.
36 Sun J, Tu K, Büchele S, et al. Matter, 2021, 4(9), 3049.
37 Lu L L, Lu Y Y, Xiao Z J, et al. Advanced Materials, 2018, 30(20), 1706745.
38 Li S C, Hu B C, Ding Y W, et al. Angewandte Chemie International Edition, 2018, 57(24), 7085.
39 Ye R, Chyan Y, Zhang J, et al. Advanced Materials, 2017, 29(37), 1702211.
40 Wang F, Lee J, Chen L, et al. ACS Nano, 2023, 17(10), 8866.
41 Bai L, Zhang Y, Guo S, et al. Advanced Materials, 2023, 35(22), 2211437.
42 Tian L, Zhu W, Chen X, et al. Polymer, 2024, 294, 126725.
43 Farid T, Wang Y, Rafiq M I, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(21), 7078.
44 Gao Y C, Yu Z L, Qin B, et al. Advanced Materials, 2023, 35(39), 2303518.
45 Li J, Chen C, Zhu J Y, et al. Accounts of Materials Research, 2021, 2(8), 606.
46 Hernandez R R, Armstrong A, Burney J, et al. Nature Sustainability, 2019, 2(7), 560.
47 Gong J, Li C, Wasielewski M R. Chemical Society Reviews, 2019, 48(7), 1862.
48 Tountas A A, Ozin G A, Sain M M. Nature Catalysis, 2021, 4(11), 934.
49 Wang Z, Hñlzel H, Fernandez L, et al. Joule, 2024, 8(9), 2607.
50 Braff W A, Mueller J M, Trancik J E. Nature Climate Change, 2016, 6(10), 964.
51 Qi J, Zhang W, Cao R. Advanced Energy Materials, 2018, 8(5), 1701620.
52 Sivaram V, Dabiri J O, Hart D M. Joule, 2018, 2(9), 1639.
53 Lian Z, Kobayashi Y, Vequizo J J M, et al. Nature Sustainability, 2022, 5(12), 1092.
54 Jiang H, Liu X, Wang D, et al. Journal of Energy Chemistry, 2023, 79, 581.
55 Zheng X, Zhang L. Energy & Environmental Science, 2016, 9(8), 2511.
56 Liang J, Xiao K, Wang X, et al. Chemical Reviews, 2024, 124(15), 9081.
57 Liu G, Xu J, Chen T, et al. Physics Reports, 2022, 981, 1.
58 Wang W, Shi Y, Zhang C, et al. Energy & Environmental Science, 2022, 15(1), 13.
59 Xiao Y, Li X, Zheng T, et al. Coordination Chemistry Reviews, 2024, 517, 216017.
60 Ye C, Liu D, Chen P, et al. Advanced Materials, 2023, 35(11), 2209713.
61 Lumb M P, Mack S, Schmieder K J, et al. Advanced Energy Materials, 2017, 7(20), 1700345.
62 Li X, Li J, Lu J, et al. Joule, 2018, 2(7), 1331.
63 Li W, Elzatahry A, Aldhayan D, et al. Chemical Society Reviews, 2018, 47(22), 8203.
64 Zhang P, Lou X W. Advanced Materials, 2019, 31(29), 1900281.
65 Hadke S, Huang M, Chen C, et al. Chemical Reviews, 2022, 122(11), 10170.
66 Gao M, Zhu L, Peh C K, et al. Energy & Environmental Science, 2019, 12(3), 841.
67 Zhang G, Liu G, Wang L, et al. Chemical Society Reviews, 2016, 45(21), 5951.
68 Toumpanaki E, Shah D U, Eichhorn S J. Advanced Materials, 2021, 33(28), 2001613.
69 Keplinger T, Wittel F K, Rüggeberg M, et al. Advanced Materials, 2021, 33(28), 2001375.
70 Ray U, Zhu S, Pang Z, et al. Advanced Materials, 2021, 33(28), 2002504.
71 Scheller H V, Ulvskov P. Annual Review of Plant Biology, 2010, 61, 263.
72 Jin Z, Katsumata K S, Lam T B T, et al. Biopolymers, 2006, 83(2), 103.
73 Calvo Flores F G, Dobado J A. ChemSusChem, 2010, 3(11), 1227.
74 Eriksson Ö, Goring D a I, Lindgren B O. Wood Science and Technology, 1980, 14(4), 267.
75 He W, Zhou L, Wang M, et al. Science Bulletin, 2021, 66(14), 1472.
76 Xue G, Liu K, Chen Q, et al. ACS Applied Materials & Interfaces, 2017, 9(17), 15052.
77 Zhang X, Yang L, Dang B, et al. Nano Energy, 2020, 78, 105322.
78 Brongersma M L, Halas N J, Nordlander P. Nature Nanotechnology, 2015, 10(1), 25.
79 Zhu M, Li Y, Chen F, et al. Advanced Energy Materials, 2018, 8(4), 1701028.
80 Li Y, Ma Y, Liao Y, et al. Advanced Energy Materials, 2022, 12(47), 2203057.
81 Stoneham A M. Reports on Progress in Physics, 1981, 44(12), 1251.
82 Gao H, Bing N, Bao Z, et al. Chemical Engineering Journal, 2023, 454, 140362.
83 Zhang Y, Xiao H, Xiong R, et al. Separation and Purification Technology, 2023, 324, 124513.
84 Ren P, Li J, Zhang X, et al. Materials Today Energy, 2020, 18, 100546.
85 Yang T, Zhang H, Huang C, et al. Small Methods, 2023, 7(11), 2300913.
86 Zhao X, Shi L, Tian B, et al. Journal of Materials Chemistry A, 2023, 11(23), 12308.
87 Yang J, Chen Y, Jia X, et al. ACS Applied Materials & Interfaces, 2020, 12(41), 4702.
88 Huang W, Hu G, Tian C, et al. Sustainable Energy & Fuels, 2019, 3(11), 3000.
89 Ma X, Su R, Zeng Z, et al. Chemical Engineering Journal, 2023, 471, 144517.
90 Guan Q F, Han Z M, Ling Z C, et al. Nano Letters, 2020, 20(8), 5699.
91 Chen Z, Dang B, Luo X, et al. ACS Applied Materials & Interfaces, 2019, 11(29), 26032.
92 Liu H, Chen C, Wen H, et al. Journal of Materials Chemistry A, 2018, 6(39), 18839.
93 Zhang T, Qu J, Wu J, et al. Advanced Functional Materials, 2024, 34(39), 2403505.
94 Guo X, Zhao X, Luo X, et al. Angewandte Chemie International Edition, 2023, 62(27), e202301242.
95 Luo S, Liu Z, Yin X, et al. Small, 2024, 20(26), 2309087.
96 Mehrkhah R, Goharshadi E K, Ghafurian M M, et al. Solar Energy, 2021, 224, 440.
97 Meng T, Jiang B, Li Z, et al. Nano Energy, 2021, 87, 106146.
98 Hou Q, Zhou H, Zhang W, et al. Science of the Total Environment, 2021, 759, 144317.
99 He F, Han M, Zhang J, et al. Nano Energy, 2020, 71, 104650.
100 Wang P, Cui Q, Zeng Q, et al. Solar Energy, 2023, 250, 59.
101 Chao W, Wang S, Li Y, et al. Chemical Engineering Journal, 2020, 400, 125865.
102 Zhu X, Li M, Song L, et al. Separation and Purification Technology, 2022, 281, 119912.
103 Ding Y, Li S, Tian J, et al. ACS Applied Electronic Materials, 2021, 3(12), 5287.
104 Zhou X, Zhang W, Zhang C, et al. ACS Applied Materials & Interfaces, 2020, 12(9), 11232.
105 Lin J, Zhang Z, Lin X, et al. Advanced Functional Materials, 2024, 34(30), 2314231.
106 He L, Zeng X, Chen H, et al. Advanced Functional Materials, 2024, 34(19), 2313058.
107 Guo S, Li X, Li J, et al. Nature Communications, 2021, 12(1), 1343.
108 Kashyap V, Sakunkaewkasem S, Jafari P, et al. Joule, 2019, 3(12), 3100.
109 Chu S, Majumdar A. Nature, 2012, 488(7411), 294.
110 Armstrong R C, Wolfram C, De Jong K P, et al. Nature Energy, 2016, 1(1), 15020.
111 Kenisarin M, Mahkamov K. Renewable and Sustainable Energy Reviews, 2007, 11(9), 1913.
112 Chen X, Gao H, Tang Z, et al. Energy & Environmental Science, 2020, 13(12), 4498.
113 Zhou K, Sheng Y, Guo W, et al. Advanced Composites and Hybrid Materials, 2023, 6(1), 34.
114 Tang Y, Cheng Z, Yue H, et al. ACS Applied Energy Materials, 2024, 7(6), 2178.
[1] 陈浩霖, 赵佳薇, 张俊豪, 于博, 张强飞, 罗倪, 刘振国. SAMs在n-i-p型钙钛矿太阳能电池界面工程中的应用[J]. 材料导报, 2025, 39(5): 24010233-12.
[2] 侯学清, 王燚婧, 尚光富, 王环江, 何淑花. 基于芘的双席夫碱荧光探针的合成及Zn2+识别研究[J]. 材料导报, 2025, 39(5): 23090108-6.
[3] 李泽榕, 毛晨雨, 孙涛, 林煌, 王佳明, 陈步超, 汤世伟, 王维燕. 聚合物添加剂工程制备高性能银栅格上柔性钙钛矿太阳能电池[J]. 材料导报, 2025, 39(4): 24040251-5.
[4] 邓泽斌, 刘静, 赖升晖, 刘达, 黄金灼, 袁光明. 苯丙氨酸衍生物诱导SiO2矿化杉木复合材的制备及性能研究[J]. 材料导报, 2025, 39(4): 24020024-8.
[5] 周传辉, 王玺朝, 何国杜, 董岚, 吴子华, 谢华清, 王元元. 基于高稳定水基石墨烯/骨胶纳米流体的光热转换性能研究[J]. 材料导报, 2025, 39(3): 23120093-6.
[6] 赵佳薇, 陈浩霖, 罗倪, 刘振国. 卷对卷技术制备钙钛矿太阳能电池的研究进展[J]. 材料导报, 2025, 39(1): 24030057-17.
[7] 王正省, 任永生, 马文会, 吕国强, 曾毅, 詹曙, 陈辉, 王哲. 直拉法单晶硅生长原理、工艺及展望[J]. 材料导报, 2024, 38(9): 22100160-13.
[8] 崔政, 李京超, 李建章, 高强. 木材胶黏剂仿生改性研究进展[J]. 材料导报, 2024, 38(8): 22110060-7.
[9] 郑惠文, 金宏璋, 徐炎, 闫磊, 王行柱. 不同取代基对联苯二酰亚胺基空穴传输材料光电性能的影响[J]. 材料导报, 2024, 38(8): 22120082-8.
[10] 杜一, 顾邦凯, 陈曦, 李夏冰, 卢豪. 埋底界面修饰对钙钛矿太阳能电池的影响[J]. 材料导报, 2024, 38(7): 22080111-10.
[11] 杨晨光, 王秀峰. 硅基SiC薄膜制备与应用研究进展[J]. 材料导报, 2024, 38(7): 23010118-14.
[12] 黎涛, 孟威明, 王丁丁, 卫春祥, 鲁红典. 多层结构聚丙烯酰胺水凝胶太阳能蒸发器的制备及性能[J]. 材料导报, 2024, 38(7): 22080085-5.
[13] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[14] 赵登婕, 李康宁, 胡李纳, 闫彤, 杨艳坤, 郝阳, 张晨曦, 郝玉英. 氧化锡电子传输层在正置钙钛矿太阳能电池中的研究进展[J]. 材料导报, 2024, 38(21): 23040102-11.
[15] 王旭洁, 雒翠梅, 母军, 漆楚生. 热处理对木材多尺度结构及力学性能影响的研究现状[J]. 材料导报, 2024, 38(18): 23020251-8.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed