Abstract: With the development of industry and the consumption of fossil fuels, climate change, energy shortage, environmental pollution and other problems have become increasingly serious. It has become a global development trend to achieve sustainable development by developing green, environmentally friendly and renewable new materials. Photothermal conversion technology, can convert solar energy into heat energy and be used in many fields, has become one of the important methods to solve these crises. Wood is one of the most abundant renewable resources on the earth, and has been widely concerned by researchers because of its abundant reserves, renewable, degradable, simple and easy to obtain. The effective combination of wood and photothermal conversion can improve the utilization efficiency of solar energy and forest resources under the carbon neutralization strategy. This review introduces the mechanism of wood-based photothermal conversion materials, describes the current progress of photothermal conversion technology and wood construction of photothermal conversion materials, and gives a summary on the application of wood-based photothermal conversion materials in water treatment, electricity generation, hydrogen generation, phase change energy storage based on state-of-the-art researches, in order to provide reference and inspiration for related research and promote sustainable deve-lopment.
1 Harris N L, Gibbs D A, Baccini A, et al. Nature Climate Change, 2021, 11(3), 234. 2 Schubert M, Panzarasa G, Burgert I. Chemical Reviews, 2023, 123(5), 1889. 3 Yu Z L, Qin B, Ma Z Y, et al. Advanced Materials, 2021, 33(28), 2001086. 4 Babin A, Vaneeckhaute C, Iliuta M C. Biomass and Bioenergy, 2021, 146, 105968. 5 Jiang F, Li T, Li Y, et al. Advanced Materials, 2018, 30(1), 1703453. 6 Berglund L A, Burgert I. Advanced Materials, 2018, 30(19), 1704285. 7 Rowell R M. Wood Material Science & Engineering, 2006, 1(1), 29. 8 Gérardin P. Annals of Forest Science, 2016, 73(3), 559. 9 Moon R J, Martini A, Nairn J, et al. Chemical Society Reviews, 2011, 40(7), 3941. 10 Chen C, Berglund L, Burgert I, et al. Advanced Materials, 2021, 33(28), 2006207. 11 Yang H, Chao W, Wang S, et al. Energy Storage Materials, 2019, 18, 15. 12 Montanari C, Li Y, Chen H, et al. ACS Applied Materials & Interfaces, 2019, 11(22), 20465. 13 Ramage M H, Burridge H, Busse-Wicher M, et al. Renewable and Sustainable Energy Reviews, 2017, 68, 333. 14 Song J, Chen C, Zhu S, et al. Nature, 2018, 554(7691), 224. 15 Pramreiter M, Nenning T, Malzl L, et al. Nature Reviews Materials, 2023, 8(4), 217. 16 Zhou H, Wen D, Hao X, et al. Chemical Engineering Journal, 2023, 451, 138308. 17 Chen X, Zhu X, He S, et al. Advanced Materials, 2021, 33(28), 2001240. 18 Jiang Q, Singamaneni S. Joule, 2017, 1(3), 429. 19 Huang C, Dai W, Deng S, et al. Environmental Chemistry Letters, 2024, 22(2), 47. 20 Dong Y, Tan Y, Wang K, et al. Water Research, 2022, 223, 119011. 21 Zhu M, Song J, Li T, et al. Advanced Materials, 2016, 28(26), 5181. 22 Wang S, Li L, Zha L, et al. Nature Communications, 2023, 14(1), 2827. 23 Ritter M, Stricker L, Burgert I, et al. Carbohydrate Polymers, 2024, 339, 122166. 24 Tang Q, Yuan X, Zou M, et al. Advanced Materials, 2024, 36(14), 2306593. 25 Jia C, Chen C, Mi R, et al. ACS Nano, 2019, 13(9), 9993. 26 Xia Q, Chen C, Li T, et al. Science Advances, 7(5), eabd7342. 27 Li T, Zhai Y, He S, et al. Science, 2019, 364(6442), 760. 28 Chen G, Chen C, Pei Y, et al. Chemical Engineering Journal, 2020, 383, 123109. 29 Chen Q, Chen S, Fan H, et al. Chemical Engineering Journal, 2024, 494, 153219. 30 Gan W, Chen C, Kim H-T, et al. Nature Communications, 2019, 10(1), 5084. 31 Zhao X, Liu Y, Zhao L, et al. Nature Sustainability, 2023, 6(3), 30. 32 Chen C, Hu L. Advanced Materials, 2021, 33(28), 2002890. 33 Kong W, Chen C, Chen G, et al. Small, 2021, 17(40), 2008200. 34 Ram F, Garemark J, Li Y, et al. ACS Nano, 2022, 16(10), 15805. 35 Chen G, Li T, Chen C, et al. Advanced Functional Materials, 2019, 29(44), 1902772. 36 Sun J, Tu K, Büchele S, et al. Matter, 2021, 4(9), 3049. 37 Lu L L, Lu Y Y, Xiao Z J, et al. Advanced Materials, 2018, 30(20), 1706745. 38 Li S C, Hu B C, Ding Y W, et al. Angewandte Chemie International Edition, 2018, 57(24), 7085. 39 Ye R, Chyan Y, Zhang J, et al. Advanced Materials, 2017, 29(37), 1702211. 40 Wang F, Lee J, Chen L, et al. ACS Nano, 2023, 17(10), 8866. 41 Bai L, Zhang Y, Guo S, et al. Advanced Materials, 2023, 35(22), 2211437. 42 Tian L, Zhu W, Chen X, et al. Polymer, 2024, 294, 126725. 43 Farid T, Wang Y, Rafiq M I, et al. ACS Sustainable Chemistry & Engineering, 2022, 10(21), 7078. 44 Gao Y C, Yu Z L, Qin B, et al. Advanced Materials, 2023, 35(39), 2303518. 45 Li J, Chen C, Zhu J Y, et al. Accounts of Materials Research, 2021, 2(8), 606. 46 Hernandez R R, Armstrong A, Burney J, et al. Nature Sustainability, 2019, 2(7), 560. 47 Gong J, Li C, Wasielewski M R. Chemical Society Reviews, 2019, 48(7), 1862. 48 Tountas A A, Ozin G A, Sain M M. Nature Catalysis, 2021, 4(11), 934. 49 Wang Z, Hñlzel H, Fernandez L, et al. Joule, 2024, 8(9), 2607. 50 Braff W A, Mueller J M, Trancik J E. Nature Climate Change, 2016, 6(10), 964. 51 Qi J, Zhang W, Cao R. Advanced Energy Materials, 2018, 8(5), 1701620. 52 Sivaram V, Dabiri J O, Hart D M. Joule, 2018, 2(9), 1639. 53 Lian Z, Kobayashi Y, Vequizo J J M, et al. Nature Sustainability, 2022, 5(12), 1092. 54 Jiang H, Liu X, Wang D, et al. Journal of Energy Chemistry, 2023, 79, 581. 55 Zheng X, Zhang L. Energy & Environmental Science, 2016, 9(8), 2511. 56 Liang J, Xiao K, Wang X, et al. Chemical Reviews, 2024, 124(15), 9081. 57 Liu G, Xu J, Chen T, et al. Physics Reports, 2022, 981, 1. 58 Wang W, Shi Y, Zhang C, et al. Energy & Environmental Science, 2022, 15(1), 13. 59 Xiao Y, Li X, Zheng T, et al. Coordination Chemistry Reviews, 2024, 517, 216017. 60 Ye C, Liu D, Chen P, et al. Advanced Materials, 2023, 35(11), 2209713. 61 Lumb M P, Mack S, Schmieder K J, et al. Advanced Energy Materials, 2017, 7(20), 1700345. 62 Li X, Li J, Lu J, et al. Joule, 2018, 2(7), 1331. 63 Li W, Elzatahry A, Aldhayan D, et al. Chemical Society Reviews, 2018, 47(22), 8203. 64 Zhang P, Lou X W. Advanced Materials, 2019, 31(29), 1900281. 65 Hadke S, Huang M, Chen C, et al. Chemical Reviews, 2022, 122(11), 10170. 66 Gao M, Zhu L, Peh C K, et al. Energy & Environmental Science, 2019, 12(3), 841. 67 Zhang G, Liu G, Wang L, et al. Chemical Society Reviews, 2016, 45(21), 5951. 68 Toumpanaki E, Shah D U, Eichhorn S J. Advanced Materials, 2021, 33(28), 2001613. 69 Keplinger T, Wittel F K, Rüggeberg M, et al. Advanced Materials, 2021, 33(28), 2001375. 70 Ray U, Zhu S, Pang Z, et al. Advanced Materials, 2021, 33(28), 2002504. 71 Scheller H V, Ulvskov P. Annual Review of Plant Biology, 2010, 61, 263. 72 Jin Z, Katsumata K S, Lam T B T, et al. Biopolymers, 2006, 83(2), 103. 73 Calvo Flores F G, Dobado J A. ChemSusChem, 2010, 3(11), 1227. 74 Eriksson Ö, Goring D a I, Lindgren B O. Wood Science and Technology, 1980, 14(4), 267. 75 He W, Zhou L, Wang M, et al. Science Bulletin, 2021, 66(14), 1472. 76 Xue G, Liu K, Chen Q, et al. ACS Applied Materials & Interfaces, 2017, 9(17), 15052. 77 Zhang X, Yang L, Dang B, et al. Nano Energy, 2020, 78, 105322. 78 Brongersma M L, Halas N J, Nordlander P. Nature Nanotechnology, 2015, 10(1), 25. 79 Zhu M, Li Y, Chen F, et al. Advanced Energy Materials, 2018, 8(4), 1701028. 80 Li Y, Ma Y, Liao Y, et al. Advanced Energy Materials, 2022, 12(47), 2203057. 81 Stoneham A M. Reports on Progress in Physics, 1981, 44(12), 1251. 82 Gao H, Bing N, Bao Z, et al. Chemical Engineering Journal, 2023, 454, 140362. 83 Zhang Y, Xiao H, Xiong R, et al. Separation and Purification Technology, 2023, 324, 124513. 84 Ren P, Li J, Zhang X, et al. Materials Today Energy, 2020, 18, 100546. 85 Yang T, Zhang H, Huang C, et al. Small Methods, 2023, 7(11), 2300913. 86 Zhao X, Shi L, Tian B, et al. Journal of Materials Chemistry A, 2023, 11(23), 12308. 87 Yang J, Chen Y, Jia X, et al. ACS Applied Materials & Interfaces, 2020, 12(41), 4702. 88 Huang W, Hu G, Tian C, et al. Sustainable Energy & Fuels, 2019, 3(11), 3000. 89 Ma X, Su R, Zeng Z, et al. Chemical Engineering Journal, 2023, 471, 144517. 90 Guan Q F, Han Z M, Ling Z C, et al. Nano Letters, 2020, 20(8), 5699. 91 Chen Z, Dang B, Luo X, et al. ACS Applied Materials & Interfaces, 2019, 11(29), 26032. 92 Liu H, Chen C, Wen H, et al. Journal of Materials Chemistry A, 2018, 6(39), 18839. 93 Zhang T, Qu J, Wu J, et al. Advanced Functional Materials, 2024, 34(39), 2403505. 94 Guo X, Zhao X, Luo X, et al. Angewandte Chemie International Edition, 2023, 62(27), e202301242. 95 Luo S, Liu Z, Yin X, et al. Small, 2024, 20(26), 2309087. 96 Mehrkhah R, Goharshadi E K, Ghafurian M M, et al. Solar Energy, 2021, 224, 440. 97 Meng T, Jiang B, Li Z, et al. Nano Energy, 2021, 87, 106146. 98 Hou Q, Zhou H, Zhang W, et al. Science of the Total Environment, 2021, 759, 144317. 99 He F, Han M, Zhang J, et al. Nano Energy, 2020, 71, 104650. 100 Wang P, Cui Q, Zeng Q, et al. Solar Energy, 2023, 250, 59. 101 Chao W, Wang S, Li Y, et al. Chemical Engineering Journal, 2020, 400, 125865. 102 Zhu X, Li M, Song L, et al. Separation and Purification Technology, 2022, 281, 119912. 103 Ding Y, Li S, Tian J, et al. ACS Applied Electronic Materials, 2021, 3(12), 5287. 104 Zhou X, Zhang W, Zhang C, et al. ACS Applied Materials & Interfaces, 2020, 12(9), 11232. 105 Lin J, Zhang Z, Lin X, et al. Advanced Functional Materials, 2024, 34(30), 2314231. 106 He L, Zeng X, Chen H, et al. Advanced Functional Materials, 2024, 34(19), 2313058. 107 Guo S, Li X, Li J, et al. Nature Communications, 2021, 12(1), 1343. 108 Kashyap V, Sakunkaewkasem S, Jafari P, et al. Joule, 2019, 3(12), 3100. 109 Chu S, Majumdar A. Nature, 2012, 488(7411), 294. 110 Armstrong R C, Wolfram C, De Jong K P, et al. Nature Energy, 2016, 1(1), 15020. 111 Kenisarin M, Mahkamov K. Renewable and Sustainable Energy Reviews, 2007, 11(9), 1913. 112 Chen X, Gao H, Tang Z, et al. Energy & Environmental Science, 2020, 13(12), 4498. 113 Zhou K, Sheng Y, Guo W, et al. Advanced Composites and Hybrid Materials, 2023, 6(1), 34. 114 Tang Y, Cheng Z, Yue H, et al. ACS Applied Energy Materials, 2024, 7(6), 2178.