Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 24100119-11    https://doi.org/10.11896/cldb.24100119
  光热调控超材料的应用与创新 |
全固态电致变色器件研究进展
张文霞, 贾岩*, 程海峰, 刘东青*
国防科技大学空天科学学院新型陶瓷纤维及其复合材料重点实验室, 长沙 410073
Research Progress on All Solid State Electrochromic Devices
ZHANG Wenxia, JIA Yan*, CHENG Haifeng, LIU Dongqing*
Science and Technology on Advanced Ceramic Fibers and Composites Laboratory, College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China
下载:  全 文 ( PDF ) ( 29876KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 电致变色器件具有轻巧、响应速度快、可重复使用性能好、易于制备柔性器件等优点,在智能传感器、智能窗户、柔性可穿戴设备和储能设备等领域具有广泛应用。相较于易泄漏、安全性低的液态器件,全固态电致变色器件易于封装且安全性高,具有更好的综合应用性。本文首先介绍了电致变色器件的结构,详细综述了无机与有机固态电致变色器件的性能及应用,并对比分析了两者之间的优缺点。最后,从性能瓶颈、工艺难点及产业化等角度展望全固态电致变色器件的发展应用前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张文霞
贾岩
程海峰
刘东青
关键词:  电致变色器件  全固态  固态电解质  智能窗    
Abstract: Electrochromic devices have the advantages of lightweight, fast response speed, good reusability, and easy preparation of flexible devices. They are widely used in fields such as smart sensors, smart windows, flexible wearable devices, and energy storage devices. Compared to liquid devices that are prone to leakage and have low safety, all solid state electrochromic devices are easy to package and have high safety, making them more versatile for comprehensive applications. This article first introduces the structure of electrochromic devices, provides a detailed overview of the performance and applications of inorganic and organic solid-state electrochromic devices, and compares and analyzes the advantages and disadvantages between the two devices. Finally, the development and application prospects of all solid state electrochromic devices are discussed from the perspectives of performance bottlenecks, process difficulties, and industrialization.
Key words:  electrochromic devices    all solid state    solid state electrolyte    smart window
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TB332  
  TQ150  
基金资助: 国家自然科学基金面上项目(52073303);国家自然科学基金青年科学基金项目(62405367);国防科技大学青年自主创新科学基金项目(ZK24-36)
通讯作者:  *刘东青,博士,国防科技大学副教授、博士研究生导师,主要从事红外辐射调控材料与器件、智能伪装隐身材料研究。liudongqing07@nudt.edu.cn;贾岩,博士,国防科技大学讲师,主要从事红外辐射调控材料研究。jiayan2012@foxmail.com   
作者简介:  张文霞,国防科技大学硕士研究生,在刘东青教授的指导下进行研究。目前主要研究领域为红外辐射调控材料。
引用本文:    
张文霞, 贾岩, 程海峰, 刘东青. 全固态电致变色器件研究进展[J]. 材料导报, 2025, 39(1): 24100119-11.
ZHANG Wenxia, JIA Yan, CHENG Haifeng, LIU Dongqing. Research Progress on All Solid State Electrochromic Devices. Materials Reports, 2025, 39(1): 24100119-11.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100119  或          https://www.mater-rep.com/CN/Y2025/V39/I1/24100119
1 Liang X, Chen M, Guo S, et al. ACS Applied Materials & Interfaces, 2017, 9(46), 40810.
2 Jia Y, Liu D, Chen D, et al. Advanced Science, 2024, 11(36), 2405962.
3 Song Y, Cheng B, Cheng H, et al. ACS Applied Materials & Interfaces, 2024, 16(27), 35372.
4 Granqvist C G. Thin Solid Films, 2014, 564, 1.
5 Deb S K. Applied Optics, 1969, 8(101), 192.
6 Li H, Firby C J, Elezzabi A Y. Joule, 2019, 3(9), 2268.
7 Wang W Q, Wang X L, Xia X H, et al. Nanoscale, 2018, 10(17), 8162.
8 Alamer F A, Otley M T, Ding Y, et al. Advanced Materials, 2013, 25(43), 6256.
9 Wang K, Wu H, Meng Y, et al. Energy & Environmental Science, 2012, 5(8), 8384.
10 Huang Q, Hu J, Yin M, et al. Solar Energy Materials and Solar Cells, 2024, 267, 112706.
11 Zhou D, Xie D, Xia X, et al. Science China Chemistry, 2016, 60(1), 3.
12 Wang W, Guo S, Feng F, et al. Polymer Reviews, DOI:10.1080/15583724. 2024. 2406973.
13 Dini D, Decker F. Electrochimica Acta, 1998, 43(19-20), 2919.
14 Xiao Y, Zhong X, Guo J, et al. Electrochimica Acta, 2018, 260, 254.
15 Cui Y, Wang Q, Yang G, et al. Journal of Solid State Chemistry, 2021, 297, 122082.
16 Macher S, Schott M, Sassi M, et al. Advanced Functional Materials, 2019, 30(6), 1906254.
17 Farasat M, Golzan M M, Farhadi K, et al. Modern Physics Letters B, 2016, 30(15), 1650175.
18 Jamdegni M, Kaur A. Journal of the Electrochemical Society, 2022, 169(3), 030541.
19 Yan C, Kang W, Wang J, et al. ACS nano, 2014, 8(1), 316.
20 Lin S, Wang H, Zhang X, et al. Nano Energy, 2019, 62, 111.
21 Ghosh T, Kandpal S, Rani C, et al. Advanced Optical Materials, 2023, 11(12), 2203126.
22 Jia H, Cao X, Jin P. Journal of Inorganic Materials, 2020, 35(5), 1650175.
23 Zhang X, Zhang H, Li Q, et al. IEEE Electron Device Letters, 2000, 21(5), 215.
24 Li W, Zhang X, Chen X, et al. Materials Letters, 2020, 265, 127464.
25 Cao X, Jin P, Huang A, et al. Journal of Inorganic Materials, 2021, 36(5), 479.
26 Zhu Y, Xie L, Chang T, et al. Electrochimica Acta, 2019, 317, 10.
27 Liu Q, Dong G, Chen Q, et al. Solar Energy Materials and Solar Cells, 2018, 174, 545.
28 Li J, Liu W, Wei Y, et al. ACS Sustainable Chemistry & Engineering, 2023, 11(2), 824.
29 Liu R, Ren Y, Hou C, et al. Ceramics International, 2024, 50(20), 38632.
30 Xiao Y, Zhang X, Li Z, et al. Solar Energy Materials and Solar Cells, 2024, 268, 112735.
31 Lee J, Sul H, Jung Y, et al. Advanced Functional Materials, 2020, 30(36), 2003328.
32 Hammad A H. Journal of Materials Science: Materials in Electronics, 2024, 35(4), 291.
33 Sequeira C A C, Rodrigues L F F T T G, Santos D M F. ECS Journal of Solid State Science and Technology, 2012, 1(5), R136.
34 Ren Y, Liu R, Nishii J, et al. ACS Applied Materials & Interfaces, 2024, 16(15), 19094.
35 Tian Y, Zhang W, Cong S, et al. Advanced Functional Materials, 2015, 25(36), 5833.
36 Wang Z, Wang H, Gu X, et al. Solid State Ionics, 2019, 338, 168.
37 Wang J, Xie S, Shi Q, et al. Ceramics International, 2022, 48(21), 31491.
38 Jia H, Ji X, Shao Z, et al. Advanced Optical Materials, 2022, 10(11), 2200106.
39 Sun S, Tang C, Jiang Y, et al. Solar Energy Materials and Solar Cells, 2020, 207, 110332.
40 Tian Y, Cong S, Su W, et al. Nano Letters, 2014, 14(4), 2150.
41 Tong Z, Lian R, Yang R, et al. Energy Storage Materials, 2022, 44, 497.
42 Sequeira C, Rodrigues L F F T T G, Santos D M F. ECS Journal of Solid State Science and Technology, 2012, 1(5), R136.
43 Hammad A H. Journal of Materials Science: Materials in Electronics, 2024, 35(4), 291.
44 Tian Y, Zhang W, Cong S, et al. Advanced Functional Materials, 2015, 25(36), 5833.
45 Dong D, Wang W, Dong G, et al. Applied Surface Science, 2015, 357, 799.
46 Dong D, Wang W, Dong G, et al. Applied Surface Science, 2016, 383, 49.
47 Niwa T, Takai O. Thin Solid Films, 2010, 518(18), 5340.
48 Niwa T, Takai O. Thin Solid Films, 2010, 518(6), 1722.
49 Pan L, Han Q, Dong Z, et al. Electrochimica Acta, 2019, 328, 135107.
50 Wang S, Jiang T, Meng Y, et al. Science, 2021, 374(6574), 1501.
51 Yuan G, Hua C, Khan S, et al. Electrochimica Acta, 2018, 260, 274.
52 Wang Z, Wang H, Gu X, et al. Solid State Ionics, 2019, 338, 168.
53 Burkhardt S, Elm M T, Lani Wayda B, et al. Advanced Materials Interfaces, 2018, 5(6), 1701587.
54 Ding Y, Wang M, Mei Z, et al. Materials and Solar Cells, 2022, 248, 112037.
55 Larsson A L, Niklasson G A. Materials Letters, 2004, 58(20), 2517.
56 Cho H M, Hwang Y J, Oh H S, et al. Advanced Photonics Research, 2024, 2024, 2400103.
57 Kim B, Koh J K, Park J, et al. Nano Convergence, 2015, 2(1), 19.
58 Ismail L, Majid S R, Arof A K. Materials Research Innovations, 2013, 13(3), 282.
59 Ergoktas M S, Bakan G, Steiner P, et al. Nano Letters, 2020, 20(7), 5346.
60 Zhang F, Dong G, Liu J, et al. Ionics, 2017, 23(7), 1879.
61 Chen N, Dai Y, Xing Y, et al. Energy & Environmental Science, 2017, 10(7), 1660.
62 Huang R, Xie Y, Cao N, et al. Nano Energy, 2024, 129, 109989.
63 Orimolade B O, Draper E R. Chemistry-A European Journal, 2024, 30(23), e202303880.
64 Shinde S S, Wagh N K, Kim S H, et al. Advanced Science, 2023, 10(32), 2304235.
65 Rajendran S. Solid State Ionics, 2004, 167(3-4), 335.
66 Schwendeman I, Hwang J, Welsh D M, et al. Advanced Materials, 2001, 13(9), 634.
67 Rajendran S, Mahendran O. Ionics, 2001, 7, 463.
68 Yahya M Z A, Arof A K. European Polymer Journal, 2003, 39(5), 897.
69 Singh K P, Singh R P, Gupta P N. Solid State Ionics, 1995, 78(3-4), 223.
70 Alesanco Y, Palenzuela J, Viñuales A, et al. ChemElectroChem, 2014, 2(2), 218.
71 Vijayaraghavan S, Raj N, Kumar M M, et al. Electrochimica Acta, 2024, 504, 144948.
72 Garcia G, Buonsanti R, Runnerstrom E L, et al. Nano Letters, 2011, 11(10), 4415.
73 Azarian M H, Wootthikanokkhan J. Chinese Journal of Polymer Science, 2022, 40(10), 1213.
74 Wang X, Yang Y, Jin Q, et al. Advanced Functional Materials, 2023, 33(30), 2214417.
75 Zhou Z, Tang Y, Zhao F, et al. Chemical Engineering Journal, 2024, 481, 148724.
76 Zhao Y, Chen X, Tu S, et al. Optical Materials, 2024, 149, 114991.
77 Kandpal S, Ghosh T, Rani C, et al. Solar Energy Materials and Solar Cells, 2022, 236, 111502.
78 Lee M, Son M, Chun D M, et al. International Journal of Precision Engineering and Manufacturing, 2020, 22(1), 189.
79 Li J, Li J, Li H, et al. ACS Applied Materials & Interfaces, 2021, 13(23), 27200.
80 Shao Z, Huang A, Ming C, et al. Nature Electronics, 2022, 5(1), 45.
81 Wu X, Bai Z, Bao B, et al. Advanced Functional Materials, 2023, 34(12), 2312358.
82 Liu Q, Dong G, Xiao Y, et al. Solar Energy Materials and Solar Cells, 2016, 157, 844.
83 Evecan D, Zayim E. Current Applied Physics, 2019, 19(2), 198.
[1] 魏一帆, 夏会聪, 张佳楠. 钠离子存储器件中界面效应作用机制研究[J]. 材料导报, 2024, 38(8): 23120085-9.
[2] 王海萍, 陈必华, 陶益杰, 黄凯兵, 张世国. 聚醚接枝丙烯酸树脂基凝胶聚合物电解质的制备及在电致变色器件中的应用[J]. 材料导报, 2024, 38(7): 22090034-5.
[3] 张化福, 周爱萍, 吴志明, 蒋亚东. 二氧化钒金属-绝缘相变的回线宽度及其调控研究进展[J]. 材料导报, 2023, 37(6): 21050100-10.
[4] 张家庆, 张达, 陈昆峰, 薛冬峰, 梁风. 稀土改性锂基氧化物固态电解质研究现状与展望[J]. 材料导报, 2023, 37(3): 22110300-9.
[5] 陈斐, RannalterLeana Ziwen, 宋尚斌, 曹诗雨, 沈强. 氧化物固体电解质的三维框架结构设计及在全固态锂离子电池中的应用[J]. 材料导报, 2023, 37(19): 22020093-15.
[6] 谢忠洲, 李钟昊, 逯浩, 王莹, 刘永生. 纳米复合结构对VO2相变特性的影响[J]. 材料导报, 2022, 36(8): 20080150-10.
[7] 张梦梦, 刘梦, 杨丽丽, 葛邓腾. 液晶材料在智能光学器件中的应用研究进展[J]. 材料导报, 2022, 36(18): 21040006-9.
[8] 姚诗言, 曾立艳, 刘军. 高性能锂金属电池负极结构设计及界面强化研究进展[J]. 材料导报, 2022, 36(16): 21010216-11.
[9] 李雅洁, 刘剑, 徐晨, 邢镔. 水热法制备固态电解质Li3xLa2/3-xTiO3粉末[J]. 材料导报, 2021, 35(z2): 8-12.
[10] 贾政刚, 张学习, 钱明芳, 耿林, 熊岳平. 全固态锂硫电池中界面问题的研究现状[J]. 材料导报, 2021, 35(9): 9097-9107.
[11] 董大彰, 赵梦媛, 解昊, 边凌峰, 杨星, 孟彬. Ba、Ga共掺杂对石榴石型固态电解质Li7La3Zr2O12显微组织及电导率的影响[J]. 材料导报, 2020, 34(4): 4001-4006.
[12] 罗志虹, 冀晨皓, 朱广彬, 李富杰, 周立, 罗鲲. 提高锂电极稳定性的方法及其在锂氧电池中的应用[J]. 材料导报, 2020, 34(19): 19067-19074.
[13] 刘建伟,王嘉楠,朱蕾,延卫. 柔性锂硫电池材料:综述[J]. 材料导报, 2020, 34(1): 1155-1168.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed