Please wait a minute...
材料导报  2025, Vol. 39 Issue (1): 24100081-9    https://doi.org/10.11896/cldb.24100081
  光热调控超材料的应用与创新 |
纤维素基光子晶体的研究进展
丁鉴峒1, 谌阳2, 宋坤1, 张立佳1, 孟赟慧1, 李晓白1,*, 潘梦瑶2,*, 马洪伟1,*
1 东北林业大学化学化工与资源利用学院, 哈尔滨 150040
2 电子科技大学基础与前沿研究院, 成都 611731
Advances in Cellulose-based Photonic Crystals
DING Jiantong1, SHEN Yang2, SONG Kun1, ZHANG Lijia1, MENG Yunhui1, LI Xiaobai1,*, PAN Mengyao2,*, MA Hongwei1,*
1 College of Chemistry, Chemical Engineering and Resource Utilization, Northeast Forestry University, Harbin, 150040, China
2 Institute of Fundamental and Frontier Sciences, University of Electronic Science and technology, Chengdu 611731, China
下载:  全 文 ( PDF ) ( 36288KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维素基光子晶体是以纤维素及其衍生物为主要构成材料的光子晶体,其结构通常由周期性排列的、具有不同折射率的纤维素材料或纤维素与其他材料的复合物构成,从而能够有效控制光子的传播特性。纤维素基光子晶体的优势在于纤维素材料的可持续性、生物相容性和生物降解性,使其在生物传感、光学器件和手性光子学等领域具有广泛的潜在应用价值。近年来,纤维素纳米晶(Cellulose nanocrystals,CNC)因其精细的纳米结构、优异的机械性能、较低的膨胀系数,以及出色的可塑性和黏结性,在光子晶体的制备与应用研究中备受关注。然而,关于其他类型的纤维素基光子晶体的研究进展,论述仍显不足。本文从纤维素基光子晶体的种类入手,首先介绍了其光学调控机制及制备方法,进一步综述了不同种类纤维素光子晶体在传感器件、光学防伪和其他智能材料中的应用。最后,总结了当前纤维素基光子晶体材料研究中亟待解决的问题,并展望了其未来的研究方向和发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
丁鉴峒
谌阳
宋坤
张立佳
孟赟慧
李晓白
潘梦瑶
马洪伟
关键词:  纤维素基光子晶体  生物相容性  光学调控  智能传感    
Abstract: Cellulose-based photonic crystals are photonic crystals with cellulose and its derivatives as the main constituent materials, and their structures are usually composed of periodically arranged cellulose materials with different refractive indices or complexes of cellulose and other mate-rials, which enable effective control of the propagation characteristics of photons. The advantages of cellulose-based photonic crystals lie in the sustainability, biocompatibility and biodegradability of cellulose materials, which make them have a wide range of potential applications in the fields of biosensing, optical devices and chiral photonics. In recent years, cellulose nanocrystals (CNC) have attracted much attention in the preparation and application of photonic crystals due to their fine nanostructures, excellent mechanical properties, low expansion coefficients, as well as excellent plasticity and adhesion. However, there is still insufficient discussion on the research progress of other types of cellulose-based photonic crystals. Starting from the types of cellulose-based photonic crystals, this paper first outlines their optical modulation mechanisms and preparation methods, and further clarifies the applications of different types of cellulose-based photonic crystals in sensor devices, optical anti-counterfeiting and other smart materials. It ends with a prospective discussion on the existing problems and future trends.
Key words:  cellulose-based photonic crystal    biocompatibility    optical modulation    intelligent sensing
出版日期:  2025-01-10      发布日期:  2025-01-10
ZTFLH:  TB381  
基金资助: 国家自然科学基金(6220030127);中央高校基本科研业务费专项资金(2572023CT12)
通讯作者:  *李晓白,博士,副教授,博士研究生导师,黑龙江省高层次人才。2017年于吉林大学化学学院获得高分子化学与物理博士学位,同年10月进入哈尔滨工业大学从事博士后研究工作。2020年10月进入东北林业大学从事教学与科研工作。研究方向为有机光电信息存储材料与人工智能识别技术。lixiaobai2008@126.com;潘梦瑶,现任电子科技大学、基础与前沿研究院助理研究员。2022年于哈尔滨工业大学航天学院获得材料学博士学位,2016年于安徽理工大学材料学院获得学士学位。主要从事光热调控材料的构筑以及表面材料科学的研究工作。panmengyao2019@126.com;马洪伟,博士,教授,博士研究生导师,2017年毕业于吉林大学超分子结构与材料国家重点实验室,获得高分子化学与物理博士学位,同年进入东北林业大学从事教学与科研工作。研究方向为有机光电智能感知材料与超前识别技术的开发。mahw@nefu.edu.cn   
作者简介:  丁鉴峒,2020年6月于沈阳大学获得工学学士学位。现为东北林业大学化学化工与资源利用学院硕士研究生,在马洪伟教授的指导下进行研究。目前主要研究领域为有机荧光探针。
引用本文:    
丁鉴峒, 谌阳, 宋坤, 张立佳, 孟赟慧, 李晓白, 潘梦瑶, 马洪伟. 纤维素基光子晶体的研究进展[J]. 材料导报, 2025, 39(1): 24100081-9.
DING Jiantong, SHEN Yang, SONG Kun, ZHANG Lijia, MENG Yunhui, LI Xiaobai, PAN Mengyao, MA Hongwei. Advances in Cellulose-based Photonic Crystals. Materials Reports, 2025, 39(1): 24100081-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.24100081  或          https://www.mater-rep.com/CN/Y2025/V39/I1/24100081
1 Kong Y, Tang M Y, Fu W L, et al. Acta Materiae Compositae Sinica, 2023, 40(10), 5486 (in Chinese).
孔亚杰, 唐明宇, 符婉琳, 等. 复合材料学报, 2023, 40(10), 5486.
2 Li M, Song Y. Frontiers of Chemistry in China, 2010, 5(2), 115.
3 Hou J, Li M, Song Y. Angewandte Chemie International Edition, 2018, 57(10), 2544.
4 Whitney H M, Kolle M, Andrew P, et al. Science, 2009, 323(5910), 130.
5 Giraldo M A, Stavenga D G. Journal of Comparative Physiology A, 2016, 202(5), 381.
6 Wang M H, Meng F S, Wu H, et al. Crystals, 2016, 6(8), 99.
7 Vigneron J P, Pasteels J M, Windsor D M, et al. Physical Review E, 2007, 76(3), 031907.
8 Song M L, Wang X P, Fu W L, et al. Materials Reports, 2016, 30(7), 22 (in Chinese).
宋明丽, 王小平, 王丽军, 等. 材料导报, 2016, 30(7), 22.
9 Fu S Y. China Pulp & Paper, 2019, 38(6), 54 (in Chinese).
付时雨. 中国造纸, 2019, 38(6), 54.
10 Yao Y J, Wang H R. Materials Reports, 2018, 32(19), 3478 (in Chinese).
姚一军, 王鸿儒. 材料导报, 2018, 32(19), 3478.
11 Quelhas A R, Trindade A C. Crystals, 2023, 13(7), 1010.
12 Guo J D, Gao Y, Pan M Y, et al. ACS Applied Materials & Interfaces, 2024, 16(18), 23703.
13 Li X B, Zou S Q, Pan M Y, et al. Microchemical Journal, 2024, 197, 109895.
14 Tang R Q, Lu M L, Duan R, et al. Chinese Journal of Liquid Crystals and Displays, 2022, 37(10), 1263 (in Chinese).
唐瑞琪, 逯孟丽, 段然, 等. 液晶与显示, 2022, 37(10), 1263.
15 Nagarajan K J, Ramanujam N R, Sanjay M R, et al. Polymer Composites, 2021, 42(4), 1588.
16 Klemm D, Heublein B, Fink H-P, et al. Angewandte Chemie International Edition, 2005, 44(22), 3358.
17 Nishiyama Y, Langan P, Chanzy H. Journal of the American Chemical Society, 2002, 124(31), 9074.
18 Khan R, Jolly R, Fatima T, et al. Polymers for Advanced Technologies, 2022, 33(7), 2069.
19 Jiao X H, Jia K L, Yu Y J, et al. Carbohydrate Polymers, 2024, 350, 122977.
20 Chen J W, Jin X Y, Chen K L, et al. Journal of Cellulose Science and Technology, 2024, 32(3), 42 (in Chinese).
陈俊为, 靳晓雅, 陈开留, 等. 纤维素科学与技术, 2024, 32(3), 42.
21 Zheng Z J, Tao T, Wan C C. New Chemical Materials, 2024, 52(8), 15 (in Chinese).
邓芷洁, 陶涛, 万才超. 化工新型材料, 2024, 52(8), 15.
22 Casado U, Mucci V L, Aranguren M I. Carbohydrate Polymers, 2021, 261, 117848.
23 De Vries, H. L. In: Opticals Effects in Liquid Crystals, Springer Netherlands, 1951, pp. 31.
24 Duan C L, Cheng Z, Wang B, et al. Small, 2021, 17(30), 2007306.
25 Klockars K W, Tardy B L, Borghei M, et al. Biomacromolecules, 2018, 19(7), 2931.
26 Chen H H, Zhang X F, Zhou T C, et al. Small, 2024, 20(37), 2311283.
27 Tran A, Hamad W Y, Maclachlan M J. Langmuir, 2018, 34(2), 646.
28 Chen T X, Zhao Q L, Meng X, et al. ACS Nano, 2020, 14(8), 9440.
29 Fenzl C, Hirsch T, Wolfbeis O S. Angewandte Chemie International Edition, 2014, 53(13), 3318.
30 Pan M Y, Wang L B, Dou S L, et al. Crystals, 2019, 9(8), 417.
31 Kou D H, Ma W, Zhang S F, et al. Chemical Industry and Engineering Progress, 2018, 37(4), 1468 (in Chinese).
寇东辉, 马威, 张淑芬, 等. 化工进展, 2018, 37(4), 1468.
32 Hu L W, Liu X H, Liu C T, et al. Acta Chimica Sinica, 2023, 81(7), 809 (in Chinese).
胡立伟, 刘宪虎, 刘春太, 等. 化学学报, 2023, 81(7), 809.
33 Yablonovitch E, Gmitter T, Leung K. Physical Review Letters, 1991, 67(17), 2295.
34 Ho K M, Chan C T, Soukoulis C M, et al. Solid State Communications, 1994, 89(5), 413.
35 Abu-Safe H. Optical Materials, 2021, 114, 110974.
36 Ordouie E, Alisafaee H, Siahmakoun A. Optics Letters, 2018, 43(17), 4288.
37 von Freymann G, Kitaev V, Lotsch B V, et al. Chemical Society Reviews, 2013, 42(7), 2528.
38 Chen Q, Liu P, Nan F C, et al. Biomacromolecules, 2014, 15(11), 4343.
39 Droguet B E, Liang H-L, Frka-Petesic B, et al. Nature Materials, 2022, 21(3), 352.
40 Lian X X, Liu X, Zao Q, et al. China Pulp & Paper, 2021, 40(5), 77 (in Chinese).
廉晓芯, 刘昕, 赵强, 等. 中国造纸, 2021, 40(5), 77.
41 Park S M, Yoon D K. Materials Horizons, 2024, 11(8), 1843.
42 Holland B T, Blanford C F, Stein A. Science, 1998, 281(5376), 538.
43 Vlasov Y A, Bo X Z, Sturm J C, et al. Nature, 2001, 414(6861), 289.
44 Braun P V, Wiltzius P. Nature, 1999, 402(6762), 603.
45 Zhang Y S, Zhu C L, Xia Y N. Advanced Materials, 2017, 29(33), 1701115.
46 Sui Y Q, Li X F, Chang W, et al. Carbohydrate Polymers, 2020, 232, 115778.
47 Huang L Y, Zhang X Z, Deng L, et al. ACS Nano, 2024, 18(4), 3627.
48 Wang Q, Zhang Z H, Wang C, et al. Advanced Science, 2024, 11(11), 2308442.
49 Sun C Y, Zhu D D, Jia H Y, et al. ACS Applied Materials & Interfaces, 2019, 11(42), 39192.
50 Yao K, Meng Q J, Bulone V, et al. Advanced Materials, 2017, 29(28), 1701323.
51 Wei X Y, Lin T, Wang L, et al. International Journal of Biological Macromolecules, 2023, 235, 123805.
52 Sun C Y, Zhu D D, Jia H Y, et al. Carbohydrate Polymers, 2021, 260, 117823.
53 Boott C E, Tran A, Hamad W Y, et al. Angewandte Chemie International Edition, 2020, 59(1), 226.
54 Boott C E, Soto M A, Hamad W Y, et al. Advanced Functional Materials, 2021, 31(43), 2103268.
55 Hou A Q, Chen H H, Zheng C W, et al. ACS Nano, 2020, 14(6), 7380.
56 Yang J, Zhu Z G, Feng J S, et al. Microchemical Journal, 2020, 157, 105074.
57 Zhang W X, Xue M, Fan J, et al. ACS Applied Materials & Interfaces, 2022, 14(8), 10701.
58 Zhang Z H, Chen Z Y, Wang Y, et al. Advanced Functional Materials, 2022, 32(12), 2107242.
59 Wen X X, Zhang J X, Li J N, et al. Advanced Functional Materials, 2024, 34(2), 2308973.
60 Qu D, Rojas O J, Wei B, et al. Advanced Optical Materials, 2022, 10(22), 2201201.
61 Chen R L, Feng D C, Chen G J, et al. Advanced Functional Materials, 2021, 31(16), 2009916.
62 Cheng Q Y, Guo J H, Cao X D, et al. Chemical Engineering Journal, 2022, 439, 135670.
63 Wang S H, Qi Y G, Wang S S, et al. ACS Applied Polymer Materials, 2023, 5(11), 9642.
64 Wang C F, Pan C F, Wang Z L. ACS Nano, 2019, 13(11), 12287.
65 Zhang Z H, Chen Z Y, Wang Y, et al. Proceedings of the National Academy of Sciences of the United States of America, 2020, 117(31), 18310.
66 Li F L, Song B Q, Luo R C, et al. ACS Nano, 2023, 17(22), 22591.
67 Wang C, Liang Z H, Song F, et al. Journal of Cleaner Production, 2024, 468, 143029.
68 Addanki S, Amiri I S, Yupapin P. Results in Physics, 2018, 10, 743.
69 Zhang Z H, Wang Q, Li Y N, et al. Research, 2024, 7, 0527.
70 Pan M Y, Shao H J, Fan Y, et al. Nano-Micro Letters, 2024, 16(1), 68.
71 Pan M Y, Li X B, Xiong C J, et al. Particle & Particle Systems Characterization, 2020, 37(4), 1900495.
72 Wang Z L, Bai L, Hu C Y, et al. Sensors and Actuators B:Chemical, 2024, 418, 136354.
73 Wu M F, Zhang C Y, Wei F J, et al. Materials Chemistry Frontiers, 2020, 4(8), 2409.
74 Xu M C, Wu X Y, Yang Y, et al. ACS Nano, 2020, 14(9), 11130.
[1] 王鑫瑶, 韦永韬, 吴静, 王显彬, 杨文超, 湛永钟. XPS在新型齿科医用材料研究中的应用[J]. 材料导报, 2025, 39(5): 24100162-11.
[2] 王振峰, 伞宏赡, 田萌萌, 徐志超, 关意佳, 杨志波. 植入体表面光响应抗菌涂层的研究进展[J]. 材料导报, 2025, 39(3): 23100105-9.
[3] 邱靖, 胡剑, 陈绵, 衣玉玮. 表面自纳米化医用金属材料的研究进展[J]. 材料导报, 2024, 38(23): 23070239-10.
[4] 尹嘉琦, 沈文锋, 吕大伍, 赵京龙, 胡鹏飞, 宋伟杰. 金属氧化物半导体MEMS气体传感器研究进展[J]. 材料导报, 2024, 38(1): 22070075-14.
[5] 周婧, 樊云光, 卢林, 段国林, 孙文彬. 直写成型氧化锆生物陶瓷的制备及性能研究[J]. 材料导报, 2023, 37(17): 22020100-6.
[6] 杨卫, 徐呈祥, 陈则胜, 聂正稳, 董兵海. 基于生物聚合物伤口敷料的研究及应用进展[J]. 材料导报, 2022, 36(Z1): 21100217-5.
[7] 余洁, 赵海岚, 张岚. 角膜接触镜的聚羧酸甜菜碱表面改性研究[J]. 材料导报, 2021, 35(z2): 488-491.
[8] 吴雪莲, 杨建, 屈阳, 王秀敏. 形状记忆聚合物智能材料在生物医学领域的应用[J]. 材料导报, 2021, 35(z2): 492-500.
[9] 任书芳, 冯润妍, 程寿年, 曾俊菱, 宫雪, 王庆涛. 二维材料MXenes在传感领域的应用研究进展[J]. 材料导报, 2021, 35(5): 5075-5088.
[10] 李华芳, 郑宜星, 王鲁宁. 可降解医用金属功能化表面改性研究进展[J]. 材料导报, 2021, 35(1): 1168-1176.
[11] 贺龙朝, 荆磊, 余森, 徐云浩, 于振涛. 医用可降解镁基复合材料的研究现状及趋势[J]. 材料导报, 2020, 34(Z2): 323-326.
[12] 朱俊名, 董梁, 秦溱, 李振楠, 袁青梅. 碳基及氧化锌量子点在癌症诊疗应用中的研究进展[J]. 材料导报, 2020, 34(9): 9075-9085.
[13] 于翔, 桂久青, 张雪寅, 严亮, 卢晓龙. 尼龙66/纳米羟基磷灰石复合纤维膜的制备及骨缺损修复性能评价[J]. 材料导报, 2020, 34(12): 12185-12190.
[14] 杨丹,刘妍,钟正祥,田宫伟,樊文倩,王宇,齐殿鹏. 植入式神经微电极[J]. 材料导报, 2020, 34(1): 1107-1113.
[15] 曾德鹏, 余森, 王岚, 于振涛, 刘印, 盖晋阳, 代晓军. 医用金属材料表面自身纳米化研究进展[J]. 材料导报, 2019, 33(Z2): 343-347.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed