Please wait a minute...
材料导报  2024, Vol. 38 Issue (4): 22070054-5    https://doi.org/10.11896/cldb.22070054
  无机非金属及其复合材料 |
放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能
叶登建, 代波*
西南科技大学材料科学与工程学院,环境友好能源材料国家重点实验室,四川 绵阳 621010
Microstructure and Magnetic Properties of Bi, Ce-YIG Ceramic Sintered by Spark Plasma Sintering
YE Dengjian, DAI Bo*
State Key Laboratory of Environment-Friendly Energy Materials, School of Materials Science and Engineering, Southwest University of Science and Technology, Mianyang 621010, Sichuan, China
下载:  全 文 ( PDF ) ( 9998KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 钇铁石榴石(Y3Fe5O12,YIG)是一种立方晶体结构的软磁铁氧体材料。YIG具有法拉第效应、低的铁磁共振线宽,在微波磁光领域具有广阔的应用前景。采用球磨法,通过预烧成功制备Y2.6-xBi0.4CexFe5O12 (x=0.1,0.2)粉末,再利用放电等离子烧结(SPS)将其在较低温度下制备成陶瓷。采用X射线衍射仪对陶瓷表面和内层进行了物相分析,采用扫描电子显微镜对粉体和陶瓷形貌进行观察,采用振动样品磁强计对样品进行了静态磁性能测试。实验结果表明,由于Bi元素的掺入,预烧温度降低到1 050 ℃。利用放电等离子烧结方法,在1 050 ℃、60 MPa、保温4 min条件下制备出孔洞少、表观密度为5.358 5 g/cm3和5.446 9 g/cm3的Bi,Ce-YIG陶瓷,实现了Bi,Ce-YIG陶瓷的低温快速烧结。Ce的掺入提高了Y2.6-xBi0.4CexFe5O12 (x=0.1,0.2)粉末陶瓷的饱和磁化强度(分别为23.01 emu/g、25.96 emu/g),有利于磁光器件的小型化。Bi,Ce-YIG陶瓷的铁磁共振线宽最低为140.5 Oe,有利于器件在微波应用中的低损耗。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶登建
代波
关键词:  钇铁石榴石  陶瓷  放电等离子烧结  低温快速烧结  静态磁性能    
Abstract: Yttrium iron garnet (Y3Fe5O12, YIG) is a soft ferrite material with a cubic crystal structure. YIG has the Faraday effect and low ferromagnetic resonance linewidth, so it has broad application prospects in microwave magneto-optics. In this paper, Y2.6-xBi0.4CexFe5O12 (x=0.1, 0.2) powder was successfully prepared by ball milling and pre-sintering, and then prepared into ceramics at lower temperature by spark plasma sintering (SPS). The phase analysis of the ceramic surface and inner layer was carried out by X-ray diffractometer, the morphology of powder and ceramic was observed by scanning electron microscope, and the static magnetic properties of the samples were tested by vibrating sample magnetometer. The experimental results show that the pre-sintering temperature is reduced to 1 050 ℃ due to the incorporation of Bi element. Using spark plasma sintering method, Bi, Ce-YIG ceramics with less pores and apparent densities of 5.358 5 g/cm3 and 5.446 9 g/cm3 were prepared at 1 050 ℃, 60 MPa, and holding time for 4 min. This paper realizes low temperature rapid sintering of YIG ceramics. The incorporation of Ce increases the saturation magnetization of Y2.6-xBi0.4CexFe5O12 (x=0.1, 0.2) powder ceramics. The saturation magnetization of the powder is 23.01 emu/g and 25.96 emu/g, respectively, which is beneficial to the miniaturization of magneto-optical devices. The minimum ferromagnetic resonance linewidth of Bi,Ce-YIG ceramics is 140.5 Oe, which is beneficial to the low loss of the device in microwave applications.
Key words:  yttrium iron garnet    ceramic    spark plasma sintering    low temperature rapid sintering    static magnetic property
出版日期:  2024-02-25      发布日期:  2024-03-01
ZTFLH:  O737  
基金资助: 中国电子科技集团公司第九研究所揭榜挂帅项目(2022SK-007);西南科技大学环境友好能源材料国家重点实验室(21fksy27)
通讯作者:  *代波,西南科技大学材料与化学学院教授、博士研究生导师。2005年7月博士毕业于中国科学院物理研究所,2007—2008年英国巴斯大学博士后,2015年美国东北大学作访问学者。长期从事电磁功能材料与器件研究,在Appl.Phys.Lett.等期刊发表SCI收录论文60余篇,授权国家发明专利6项。Daibo@swust.edu.cn   
作者简介:  叶登建,2017年6月在成都理工大学获得工学学士学位,现为西南科技大学材料与化学学院硕士研究生,在代波教授的指导下进行研究,主要研究领域为磁性陶瓷。
引用本文:    
叶登建, 代波. 放电等离子烧结Bi、Ce掺杂钇铁石榴石陶瓷的微观结构与磁性能[J]. 材料导报, 2024, 38(4): 22070054-5.
YE Dengjian, DAI Bo. Microstructure and Magnetic Properties of Bi, Ce-YIG Ceramic Sintered by Spark Plasma Sintering. Materials Reports, 2024, 38(4): 22070054-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070054  或          https://www.mater-rep.com/CN/Y2024/V38/I4/22070054
1 Garskaite E, Gibson K, Leleckaitea A, et al. Journal of Chemical Physics, 2006, 323(1-2), 204.
2 Mergen A, Qureshi A. Journal of Alloys & Compounds, 2009, 478(1-2), 741.
3 Hauser C, Richter T, Homonnay N, et al. Scientific Reports, 2016, 19(6), 1.
4 Nakano T, Yuri H, Kihara U, et al. IEEE Transactions on Magnetics, 1984, 20(5), 986.
5 Jin W Z. Growth process and properties of yttrium iron garnet crystal. Master’s Thesis, Changchun University of Science and Technology, China, 2019(in Chinese).
金维召. 钇铁石榴石晶体生长工艺与性能研究. 硕士学位论文, 长春理工大学, 2019.
6 IkesueA, Aung Y. Journal of the American Ceramic Society, 2018, 101(11), 5120.
7 Yang Y, Li X Y, Liu Z Y, et al. Magnetochemistry, 2021, 7(5), 56.
8 Ali W F F W, Abdullah N S, Ain M F, et al. Materials Science Forum, 2016, 840, 276.
9 Wan F F W A, Othman M, Ain M F, et al. Journal of the European Ceramic Society, 2013, 33(7), 1317.
10 Gaudisson T, Acevedo U, Nowak S, et al. Journal of the American Ceramic Society, 2013, 96(10), 3094.
11 Fernandez-Garcia L, Suarez M, Menendez J L, et al. Journal of Alloys and Compounds, 2010, 502(1), 132.
12 Zhang T. Structure and properties of PLZT and YIG ceramics prepared by spark plasma sintering. Master’s Thesis, Zhejiang University, China, 2013(in Chinese).
张涛. 放电等离子烧结对PLZT和YIG陶瓷结构与性能的影响. 硕士学位论文, 浙江大学, 2013.
13 Mao T C, Chen J C. Journal of Magnetism & Magnetic Materials, 2006, 302(1), 74.
14 Ikesue A, Aung Y L, Yasuhara R, et al. Journal of the European Ceramic Society, 2020, 40(15), 6073.
15 Aung Y L, Ikesue A, Watanabe T, et al. Journal of Alloys and Compounds, 2019, 811(30), 152059.
16 Ning J. Zhang H W, et al. Journal of the American Ceramic Society, 2019, 102(3), 1180.
17 Dastjerdi O D, Shokrollahi H, Yang H. Ceramics International, 2020, 46(3), 2709.
18 Wu H, Huang F, Xu T, et al. Journal of Applied Physics, 2015, 117(14), 144101.
19 Caland J P, Medrano C P C, Caytuero A, et al. Journal of Alloys and Compounds, 2020, 849(30), 156657.
20 Peña-garcia R, Guerra Y, Santos F, et al. Journal of Magnetism and Magnetic Materials, 2019, 492(15), 165650.
21 Wu H, Huang F Z, Ti R X, et al. Journal of Alloys and Compounds, 2020, 861(25), 157996.
22 Fu Y P, Lin C H, Tay K W, et al. Journal of Electroceramics, 2008, 21(1-4), 677.
23 Han Z Q, Liao Y, Feng T. Magnetic Materials and Devices, 2009, 40(5), 4(in Chinese).
韩志全, 廖杨, 冯涛. 磁性材料及器件, 2009, 40(5), 4.
24 Ning J, Zhang H W, Jie L, et al. Journal of Alloys and Compounds, 2017, 695(25), 931.
[1] 蒋曜年, 刘欢, 钟镇涛, 何泽乾, 毛卫国, 戴翠英, 张有为, 刘平桂. SiCN@Fe复合吸波涂层高温原位拉伸测试分析[J]. 材料导报, 2025, 39(3): 23050156-5.
[2] 张泽疆, 李新梅, 朱春金, 李航, 杨定力. 纳米TiB2对CoCrFeNiSi高熵合金涂层耐磨与耐蚀性能的影响[J]. 材料导报, 2025, 39(3): 23090210-9.
[3] 张晓辉, 张哲汇, 张效华, 马帅, 岳振星. Ba5[Nb1-x(Al1/3Mo2/3)x]4O15陶瓷的结构和微波介电性能[J]. 材料导报, 2025, 39(2): 23110273-6.
[4] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[5] 焦纪强, 蒙峻, 谢文君, 刘建龙, 魏宁斐, 罗成, 郭方准, 王润成. 超高真空环境下TC4钛合金和ZrO2陶瓷的出气性能研究[J]. 材料导报, 2025, 39(1): 23090126-5.
[6] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[7] 桂岩, 赵爽, 杨自春. 3D打印隔热材料研究进展[J]. 材料导报, 2024, 38(8): 22090104-11.
[8] 张昊, 黄宗玥, 张妍彬, 魏剑. (Si0.2Ti0.2Nb0.2Ta0.2V0.2)C高熵陶瓷的低温制备及吸波性能[J]. 材料导报, 2024, 38(3): 22050232-6.
[9] 张倩玮, 陈意高, 崔红, 吴小军. SiC-ZrC复相超高温陶瓷改性C/C复合材料的研究进展[J]. 材料导报, 2024, 38(3): 22060154-10.
[10] 马昕, 刘海韬, 姜如, 孙逊. He-Hutchinson模型在连续陶瓷纤维增韧陶瓷基复合材料研究中的应用[J]. 材料导报, 2024, 38(3): 22100252-7.
[11] 周卫新, 娄朝刚. 放电等离子烧结Ce、Yb共掺钇铝石榴石稀土荧光粉及其在光伏电池中的应用[J]. 材料导报, 2024, 38(22): 24040014-5.
[12] 赵建江, 陈云敏, 韦华. ZrO2(AlN)/h-BN复合陶瓷性能研究及超重力凝固坩埚研制[J]. 材料导报, 2024, 38(21): 23080202-6.
[13] 陈若瑜, 张秋哲, 赵峰, 宋滨娜. 7075 Al/10%SiC复合泡沫材料的制备和摩擦磨损行为研究[J]. 材料导报, 2024, 38(20): 23080149-6.
[14] 钱郑宇, 严冬, 恽迪. 核燃料裂变气体行为研究进展[J]. 材料导报, 2024, 38(2): 22090311-10.
[15] 陈恩光, 苏新清, 薛松柏, 陈旭东, 傅仁利, 张笑天, 程波, 王长虹, 王明伟. Ag-CuO-NiO-LiAlSiO4复合钎料空气反应钎焊GH3128/Al2O3接头组织及性能[J]. 材料导报, 2024, 38(2): 22090003-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed