Please wait a minute...
材料导报  2024, Vol. 38 Issue (3): 22060031-8    https://doi.org/10.11896/cldb.22060031
  高分子与聚合物基复合材料 |
纤维素-金属氧化物在传感器中的应用研究进展
李文龙, 支云飞*, 陈泽文, 陕绍云*, 李梦蕊
昆明理工大学化学工程学院,昆明 650504
Research Progress in the Application of Cellulose-Metal Oxides in the Field of Sensors
LI Wenlong, ZHI Yunfei*, CHEN Zewen, SHAN Shaoyun*, LI Mengrui
School of Chemical Engineering, Kunming University of Technology and Science, Kunming 650504, China
下载:  全 文 ( PDF ) ( 6337KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 纤维素-金属氧化物作为一种复合材料同时具有有机半导体的柔性与无机半导体良好的电子传输能力。这种复合材料在传感器领域有着巨大的潜力与研究价值。本文综述了以ZnO、SnO2和TiO2为主的纤维素-金属氧化物复合材料在紫外、气体和生物等传感器研究中的应用,总结了纤维素-金属氧化物复合材料中纤维素的作用、金属氧化物的状态和形貌、纤维素与金属氧化物的连接方式、不同类型传感器的传感机理以及不同传感器的结构、性能和优缺点。希望通过对纤维素-金属氧化物在传感器中研究进展的总结与展望为相关研究以及行业发展提供一定的帮助。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李文龙
支云飞
陈泽文
陕绍云
李梦蕊
关键词:  纤维素  金属氧化物  复合材料  传感器    
Abstract: Cellulose-metal oxide composites combine the excellent flexibility of organic semiconductors with the electron transport capability of inorganic semiconductors and consequently exhibit considerable application potential in the field of sensors. This review covers the applications of cellulose-metal oxide composites based on ZnO, SnO2, and TiO2 for ultraviolet, gas, and biological sensors. The function of cellulose, morphology of metal oxides, and bonding method between cellulose and metal oxides in these composites, together with their sensing mechanism and performance as sensors, are summarized in detail. This review should aid in facilitating further research and development of the sensor technology.
Key words:  cellulose    metal oxides    composite material    sensors
出版日期:  2024-02-10      发布日期:  2024-02-19
ZTFLH:  TQ352  
基金资助: 国家自然科学基金(52163003;21766016;22068023);云南省“万人计划”基金(YNWR-QNBJ-2018-198);昆明市科学技术局科技计划基金(2019-1-G-25318000003480);昆明市科学技术局科技创新要素聚集计划重点项目(2019-1-A-24657)
通讯作者:  *支云飞,昆明理工大学化学工程学院讲师、硕士研究生导师。2018年昆明理工大学博士毕业并留校工作至今。目前主要从事双功能共价有机框架材料的制备及其催化SO2与有机单体共聚的研究,发表论文17余篇。zyf891123@163.com;
陕绍云,博士、教授、博士研究生导师,云南省“高层次人才支持计划”青年拔尖人才,云南省中青年学术技术带头人,云南省高校绿色高分子材料工程研究中心主任,云南省倪永浩院士工作站负责人,昆明市林产资源高效转化与利用重点实验室主任。主要从事废气CO2吸附、分离、转化和废水中污染物处理等方面和环境保护相关的研究工作。近五年发表论文20余篇。shansy411@163.com   
作者简介:  李文龙,2020年6月于宜宾学院获得工学学士学位。现为昆明理工大学化学工程学院硕士研究生,在支云飞老师的指导下进行研究。目前主要研究领域为二氧化硫转化。
引用本文:    
李文龙, 支云飞, 陈泽文, 陕绍云, 李梦蕊. 纤维素-金属氧化物在传感器中的应用研究进展[J]. 材料导报, 2024, 38(3): 22060031-8.
LI Wenlong, ZHI Yunfei, CHEN Zewen, SHAN Shaoyun, LI Mengrui. Research Progress in the Application of Cellulose-Metal Oxides in the Field of Sensors. Materials Reports, 2024, 38(3): 22060031-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22060031  或          https://www.mater-rep.com/CN/Y2024/V38/I3/22060031
1 Gubbi J, Buyya R, Marusic S, et al. Future Generation Computer Systems, 2013, 29(7), 1645.
2 Lee I, Lee K. Business Horizons, 2015, 58(4), 431.
3 Guth U, Vonau W, Zosel J. Measurement Science and Technology, 2009, 20(4), 042002.
4 Adhikari B, Majumdar S. Progress in Polymer Science, 2004, 29(7), 699.
5 Ryabtsev S V, Shaposhnick A V, Lukin A N, et al. Sensors and Actuators B:Chemical, 1999, 59(1), 26.
6 Korotcenkov G. Materials Science and Engineering B, 2007, 139(1), 1.
7 Fergus J W. Sensors and Actuators B:Chemical, 2007, 122(2), 683.
8 Heiland G, Kohl D. Sensors and Actuators, 1985, 8(3), 227.
9 Kim J H, Mun S, Ko H U, et al. Nanotechnology, 2014, 25(9), 092001.
10 Loo Y L, Someya T, Baldwin K W, et al. Proceedings of the National Academy of Sciences, 2002, 99(16), 10252.
11 Hiramoto M, Kikuchi M, Izawa S. Advanced Materials, 2019, 31(1), 1801236.
12 Russ B, Glaudell A, Urban J J, et al. Nature Reviews Materials, 2016, 1(10), 1.
13 Mun S, Kim H C, Ko H U, et al. Science and Technology of Advanced Materials, 2017, 18(1), 437.
14 Goffin A L, Raquez J M, Duquesne E, et al. Biomacromolecules, 2011, 12(7), 2456.
15 Dai L, Lu J, Kong F, et al. Advanced Composites and Hybrid Materials, 2019, 2(3), 462.
16 Park J, Seo J H, Yeom S W, et al. Advanced Optical Materials, 2018, 6(9), 1701140.
17 Sadasivuni K K, Ponnamma D, Ko H U, et al. Sensors and Actuators B:Chemical, 2016, 233, 633.
18 Kumar A, Gullapalli H, Balakrishnan K, et al. Small, 2011, 7(15), 2173.
19 Mun S, Zhai L, Min S K, et al. Journal of Intelligent Material Systems and Structures, 2015, 27(8), 1011.
20 Yun S, Jang S, Yun G Y, et al. Smart Materials and Structures, 2009, 18(11), 117001.
21 Kim J, Yun S, Ounaies Z J M. Macromolecules, 2006, 39(12), 4202.
22 Li S, Gu Y, Huang J. Supramolecular chemistry of biomimetic systems, Springer, Singapore, 2017, pp. 165.
23 Park T, Kim N, Kim D, et al. ACS Applied materials & Interfaces, 2019, 11(51), 48239.
24 Sahoo K, Mohanty B, Nayak J. Journal of Materials Science:Materials in Electronics, 2019, 30(21), 19664.
25 Mahadeva S K, Kim J. IEEE Sensors Journal, 2013, 13(6), 2223.
26 Mahadeva S K, Kim J. Science and Technology of Advanced Materials, 2011, 12(5), 055006.
27 Nadzirah S, Hashim U, Kashif M, et al. Microsystem Technologies, 2016, 23(6), 1743.
28 Kim B, Lu Y, Hannon A, et al. Sensors and Actuators B:Chemical, 2013, 177, 770.
29 Goswami Y C, Kumar V, Rajaram P. Materials Letters, 2014, 128, 425.
30 Maniruzzaman M, Jang S D, Kim J. Materials Science and Engineering B, 2012, 177(11), 844.
31 Mun S, Maniruzzaman M, Ko H U, et al. Materials Technology, 2014, 30(sup7), B150.
32 Gonzaga E R. American Journal of Clinical Dermatology, 2009, 10(1), 19.
33 Ramesh T, Nayak B, Amirbahman A, et al. Innovative Food Science & Emerging Technologies, 2016, 38, 105.
34 Yang H Y, Jun Y, Yun Y J. Composites Part B:Engineering, 2019, 163, 710.
35 Jarvis P, Autin O, Goslan E H, et al. Water, 2019, 11(9), 1894.
36 Varadan V K, Mun S, Ko H U, et al. In:SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. Las Vegas, 2016, pp. 143.
37 Mun S, Ko H U, Kang B W, et al. In:SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. San Diego, 2014, pp. 88.
38 Pimentel A, Samouco A, Nunes D, et al. Materials, 2017, 10(11), 1308.
39 Sahoo K, Mohanty B, Biswas A, et al. Materials Science in Semiconductor Processing, 2020, 105, 104699.
40 Sahoo K, Biswas A, Nayak J. Sensors and Actuators A:Physical, 2017, 267, 99.
41 Sahoo K, Mohanty B, Nayak J. Materials Today:Proceedings, 2019, 18, 1156.
42 Li X, Wang Y H, Lu A, et al. IEEE Sensors Journal, 2015, 15(11), 6100.
43 Zhai L, Kim H C, Muthoka R M, et al. Nanomaterials, 2021, 11(6), 1419.
44 Gimenez A J, Yanez-Limon J M, Seminario J M. IEEE Sensors Journal, 2013, 13(4), 1301.
45 Tran Q N, Kim I T, Park S, et al. Materials, 2020, 13(14), 3165.
46 Zhang X, Chen W, Lin Z, et al. Synthesis and Reactivity in Inorganic, Metal-Organic, and Nano-Metal Chemistry, 2011, 41(8), 997.
47 Chen Z, Xu Z, Li W, et al. ACS Applied Energy Materials, 2019, 2(7), 5171.
48 Varadan V K, Mun S, Ko H U, et al. In:SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. San Diego, 2014, pp. 92.
49 Ko H U, Mun S, Min S K, et al. Materials, 2014, 7(10), 7000.
50 Mun S, Ko H U, Min S K, et al. In:SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. Las Vegas, 2016, pp. 147.
51 Ranjith K S, Kumar R T. Nanotechnology, 2016, 27(9), 095304.
52 Tsai Y S, Lin X, Wu Y S, et al. IEEE Sensors Journal, 2021, 21(9), 11040.
53 Li G, Sun Z, Zhang D, et al. ACS Sensors, 2019, 4(6), 1577.
54 Ivanova A, Frka-Petesic B, Paul A, et al. ACS Applied Materials & Interfaces, 2020, 12(11), 12639.
55 Onkar S G, Raghuwanshi F C, Patil D R, et al. Materials Today:Proceedings, 2020, 23, 190.
56 Aparicio-Martínez E, Osuna V, Dominguez R B, et al. Journal of Nanomaterials, 2018, 2018, 1.
57 Sukhavattanakul P, Manuspiya H. Carbohydrate Polymer, 2020, 230, 115566.
58 Pang Z, Yang Z, Chen Y, et al. Colloids and Surfaces A:Physicochemical and Engineering Aspects, 2016, 494, 248.
59 Varadan V K, Chen Y, Jung H, et al. In:SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. San Diego, 2012, pp. 53.
60 Gupta C S, Dey S, Samanta D, et al. Journal of Materials Science:Materials in Electronics, 2018, 29(23), 20162.
61 Costantino F, Armirotti A, Carzino R, et al. Journal of Photochemistry and Photobiology A:Chemistry, 2020, 398, 112599.
62 Mahadeva S K, Nayak J, Kim J. Smart Materials and Structures, 2013, 22(7), 075011.
63 Sik C M, Ahn J, Young K M, et al. Applied Surface Science, 2021, 565, 150493.
64 Agarwal M, Balachandran M D, Shrestha S, et al. Journal of Nanomaterials, 2012, 2012, 1.
65 Lee J H, Park M S, Jung H, et al. Sensors and Actuators B:Chemical, 2020, 307, 127598.
66 Sakwises L, Rodthongkum N, Ummartyotin S. Journal of Molecular Li-quids, 2017, 248, 246.
67 Baniasad A, Ghorbani M. International Journal of Biological Macromolecules, 2016, 86, 901.
68 Wang L, Huang H, Xiao S, et al. ACS Applied Materials & Interfaces, 2014, 6(16), 14131.
69 Tong X, Zhang X, Li J, et al. Journal of Materials Science:Materials in Electronics, 2021, 32(18), 23566.
70 Mun S, Chen Y, Kim J. Sensors and Actuators B:Chemical, 2012, 171-172, 1186.
71 Mohd C S A, Hamidon M N, Mamat M S, et al. Materials Science in Semiconductor Processing, 2019, 99, 140.
72 Meyer T W, Hostetter T H. New England Journal of Medicine, 2007, 357(13), 1316.
73 Forouhi N G, Wareham N J. Medicine, 2010, 38(11), 602.
74 Zimmet P Z, Magliano D J, Herman W H, et al. The Lancet Diabetes & Endocrinology, 2014, 2(1), 56.
75 Yu H, Tan X, Sun S, et al. Biosensors and Bioelectronics, 2021, 185, 113250.
76 Divya, Mahapatra S, Srivastava V R, et al. Biosensors, 2021, 11(6), 168.
77 Mahadeva S K, Nayak J, Kim J. In:SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. San Diego, 2011, pp. 114.
78 Abdullahil K, Maniruzzaman M, Kang B W, et al. Sensors and Mate-rials, 2015, 27, 539.
79 Jin X, Xu J, Wang X, et al. RSC Advances, 2014, 4(25), 12640.
80 Guerrero L A, Fernandez L, Gonzalez G, et al. Nanomaterials, 2019, 10(1), 64.
81 Maniruzzaman M, Mahadeva S K, Khondoker A H, et al. In:SPIE Smart Structures and Materials+Nondestructive Evaluation and Health Monitoring. San Diego, 2012, pp. 117.
82 Akhbari V R, Rafiee-Pour H A, Noormohammadi M. Microchemical Journal, 2021, 170, 106712.
83 Nadzirah S, Gopinath S C B, Parmin N A, et al. Critical Reviews in Analytical Chemistry, 2022, 52(3), 637.
84 Arularasu M V, Harb M, Sundaram R. Carbohydrate Polymer, 2020, 249, 116868.
85 Ghasemi S, Bari M R, Pirsa S, et al. Carbohydrate Polymer, 2020, 232, 115801.
86 Kumaravel A, Chandrasekaran M. Journal of Agricultural and Food Chemistry, 2015, 63(27), 6150.
[1] 于巧玲, 刘成宝, 郑磊之, 陈丰, 邱永斌, 孟宪荣, 陈志刚. g-C3N4基纳米复合材料的合成及电化学传感性能研究[J]. 材料导报, 2025, 39(3): 23090112-11.
[2] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[3] 唐言, 严娇, 王犁, 安鹏, 颜贵龙, 来婧娟, 李振宇, 周利华, 武元鹏. 羧甲基瓜尔胶/聚乙烯醇/聚丙烯酰胺形状记忆导电水凝胶的制备及性能研究[J]. 材料导报, 2025, 39(3): 23090015-7.
[4] 马润山, 王海燕, 张琦, 杨建新, 汤彬, 李睿, 李双寿, 林万明, 范晋平. MXene对锌-空气电池双金属催化剂催化性能的影响[J]. 材料导报, 2025, 39(2): 24020010-8.
[5] 田根, 朱甫宏, 王文宇, 王晓明, 赵阳, 韩国峰, 任智强, 朱胜. 基于机器学习的传感器监测在金属激光增材制造中的应用[J]. 材料导报, 2025, 39(2): 23080174-16.
[6] 张婷, 吴翠玲, 籍冰晗, 韩梦瑶, 杜雪岩. 再生纤维素基三明治结构复合薄膜的电磁屏蔽性能[J]. 材料导报, 2025, 39(2): 23100181-6.
[7] 丁鉴峒, 谌阳, 宋坤, 张立佳, 孟赟慧, 李晓白, 潘梦瑶, 马洪伟. 纤维素基光子晶体的研究进展[J]. 材料导报, 2025, 39(1): 24100081-9.
[8] 冯妍, 葛淑慧, 隗立颖, 闫建华. 3D打印无机非金属材料增强柔性器件的研究进展[J]. 材料导报, 2025, 39(1): 23100077-12.
[9] 李月霞, 吴梦, 纪子影, 刘璐, 应国兵, 徐鹏飞. Ti3C2Tx/Fe3O4纳米复合材料的吸波和电磁屏蔽性能与机制[J]. 材料导报, 2024, 38(9): 23020143-7.
[10] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[11] 冯炜森, 杨成鹏, 贾斐. 复合材料层压板疲劳损伤演化模型的综述与评估[J]. 材料导报, 2024, 38(9): 22100058-11.
[12] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[13] 陆奔, 李安敏, 杨树靖, 袁子豪, 惠佳琪. 磁性镓基液态金属复合材料的研究进展[J]. 材料导报, 2024, 38(8): 22090217-15.
[14] 张雨, 李瑜婧, 万里强, 黄发荣, 刘坐镇. 聚三唑树脂/氮化硼纳米片复合材料的制备与性能[J]. 材料导报, 2024, 38(8): 22100089-8.
[15] 刘卉, 杨牛娃, 马梦圆, 田少囡, 张玉, 杨军. 金属基磷化物纳米材料制备与电催化应用研究进展[J]. 材料导报, 2024, 38(8): 23080249-17.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed