Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22070154-9    https://doi.org/10.11896/cldb.22070154
  无机非金属及其复合材料 |
机械滥用下锂离子电池的力学响应及安全性预测研究进展
尹啸笛1, 张涛1, 张新春1,2,*, 刘南南1, 黄子轩1, 邹有云1
1 华北电力大学机械工程系,河北 保定 071003
2 河北省电力机械装备健康维护与失效预防重点实验室,河北 保定 071003
Research Progress on Mechanical Responses and Safety Prediction of Lithium-ion Batteries Under Mechanical Abuse
YIN Xiaodi1, ZHANG Tao1, ZHANG Xinchun1,2,*, LIU Nannan1, HUANG Zixuan1, ZOU Youyun1
1 Department of Mechanical Engineering, North China Electric Power University, Baoding 071003, Hebei, China
2 Hebei Key Laboratory of Electric Machinery Health Maintenance & Failure Prevention, Baoding 071003, Hebei, China
下载:  全 文 ( PDF ) ( 20355KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 由于具有能量密度高、循环寿命长、质量轻、节能环保和自放电低等优点,锂离子电池近年来在交通工程、航空航天、新能源、机械工程等工业领域得到广泛应用。但锂离子电池在服役过程中不可避免会遭受机械滥用,引发电池内部短路,从而导致热失控,甚至发生着火和爆炸等灾难性后果。因此,亟需开展机械滥用下锂离子电池的力-电-热响应特性和安全性预测方面的研究。本文首先介绍锂离子电池的结构及工程应用,综述了各种机械滥用下锂离子电池力学性能的国内外研究现状,阐明了不同工况下锂离子电池的失效机理;其次,从耐撞性和安全风险预测的角度出发,对锂离子电池的耐撞性指标、安全性评估的研究现状进行了评述;最后,在机械滥用及多物理场耦合下以更全面的视角展望了锂离子电池的未来发展前景,可为锂离子电池多功能结构一体化设计提供一定的参考。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
尹啸笛
张涛
张新春
刘南南
黄子轩
邹有云
关键词:  锂离子电池  机械滥用  力学响应  失效行为  安全性    
Abstract: Due to the advantages of high energy density, long cycle life, light weight, energy saving and environmental protection, and low self-discharge, lithium-ion batteries (LIBs) have been widely used in transportation engineering, aerospace, new energy, mechanical engineering and other industrial fields in recent years. However, LIBs are inevitably subjected to collision accidents during service, which results in internal short circuits and further induces thermal runaway, and even causes the catastrophic consequences of fire and explosion. Therefore, it is of great significance to study the mechanical-electrical-thermal response characteristics and safety prediction of LIBs under mechanical abuse. Firstly, the internal structures and engineering application of LIBs in this paper are introduced. The mechanical properties of LIBs under various mechanical abuses at home and abroad are reviewed, and the failure mechanisms of LIBs under different working conditions are also clarified. Secondly, from the perspective of crashworthiness and safety risk prediction, the latest research progress in the crashworthiness index and safety evaluation of LIBs is summarized. Finally, the future development prospects of LIBs under mechanical abuse and multi-physics coupling are discussed. The purpose of this paper can provide a theoretical basis for the integrated design of multi-functional structures of LIBs.
Key words:  lithium-ion battery    mechanical abuse    mechanical response    failure behavior    safety
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TM912  
基金资助: 河北省自然科学基金(A2020502005)
通讯作者:  *张新春,华北电力大学机械工程系副教授,河北省电力机械装备健康维护与失效预防重点实验室副主任。主要从事新型功能/智能材料与结构、储能防护技术、冲击动力学、输电线路工程等方面的研究工作。先后主持国家自然科学基金项目1项、河北省自然科学基金项目3项;获河北省技术发明二等奖1项;授权发明专利6项;翻译国外著作1部;以第一或通信作者在国内外高水平期刊发表SCI/EI学术论文60余篇。xczhang@ncepu.edu.cn   
作者简介:  尹啸笛,2021年6月于华北电力大学机械工程(输电线路工程)专业获得工学学士学位。现为华北电力大学机械工程系硕士研究生,在张新春副教授的指导下进行研究。目前主要研究领域为锂电池的耐撞性评估。
引用本文:    
尹啸笛, 张涛, 张新春, 刘南南, 黄子轩, 邹有云. 机械滥用下锂离子电池的力学响应及安全性预测研究进展[J]. 材料导报, 2024, 38(2): 22070154-9.
YIN Xiaodi, ZHANG Tao, ZHANG Xinchun, LIU Nannan, HUANG Zixuan, ZOU Youyun. Research Progress on Mechanical Responses and Safety Prediction of Lithium-ion Batteries Under Mechanical Abuse. Materials Reports, 2024, 38(2): 22070154-9.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22070154  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22070154
1 Lai X, Chen H W, Gu H H, et al. Journal of Mechanical Engineering, 2022, 58(22), 3 (in Chinese).
来鑫, 陈权威, 顾黄辉,等. 机械工程学报, 2022, 58(22), 3.
2 Jiang F C, Zhang F S, Xu C S, et al. Journal of Mechanical Enginee-ring, 2021, 57(14), 23 (in Chinese).
江发潮, 章方树, 徐成善, 等. 机械工程学报, 2021, 57(14), 23.
3 Li H, He Y Y, Zhou G W. Materials Reports, 2021, 35(23), 23050 (in Chinese).
李欢, 何妍妍, 周国伟. 材料导报, 2021, 35(23), 23050.
4 Xiong R, Yan L J, Wang Q. Journal of Mechanical Engineering, 2021, 57(20), 161 (in Chinese).
熊瑞, 闫良基, 王榘. 机械工程学报, 2021, 57(20), 161.
5 Zhang X, Zhang T, Liu N, et al. Engineering Failure Analysis, 2023, 154, 107653.
6 Liu Y J, Zhao W, Sun X F, et al. Acta Energiae Solaris Sinica, 2023, 44(8), 1 (in Chinese).
刘玉洁, 赵巍, 孙孝峰, 等. 太阳能学报, 2023, 44(8), 1.
7 Chen Y, Kang Y, Zhao Y, et al. Journal of Energy Chemistry, 2021, 59, 83.
8 Wang L B, Yin S, Xu J. Journal of Power Sources, 2019, 413, 284.
9 Feng X, Ouyang M, Liu X, et al. Energy Storage Materials, 2018, 10, 246.
10 Wang W, Yang S, Lin C, et al. Journal of Power Sources, 2020, 451, 227749.
11 Nguyen T N, Siegmund T, Tsutsui W, et al. Materials & Design, 2016, 105, 51.
12 Liu B, Jia Y, Yuan C, et al. Energy Storage Materials, 2020, 24, 85.
13 Zhu X, Wang H, Wang X, et al. Journal of Power Sources, 2020, 455, 227939.
14 Li H, Liu B, Zhou D, et al. Journal of the Electrochemical Society, 2020, 167(12), 120501.
15 Huang L, Liu L, Lu L, et al. International Journal of Energy Research, 2021, 45(11), 15797.
16 Sheikh M, Elmarakbi A, Elkady M. Journal of Power Sources, 2017, 370, 61.
17 Wang W W, Yang S, Lin C. Applied Energy, 2017, 196, 249.
18 Xia Y, Chen G, Zhou Q, et al. Engineering Failure Analysis, 2017, 82, 149.
19 Li M. Research on safety and protection of cylindrical power lithium-ion battery under mechanical abuse. Master’s Thesis, Taiyuan University of Technology, China, 2021 (in Chinese).
李梦. 圆柱形动力锂离子电池在机械滥用下的安全及防护研究. 硕士学位论文, 太原理工大学, 2021.
20 Ma S. A multi-scale simulation strategy for lithium-ion battery and its application in crash safety of battery pack. Master’s Thesis, Hunan University, China, 2020 (in Chinese).
马帅. 锂离子电池多尺度仿真方法及其在电池包碰撞安全中的应用. 硕士学位论文, 湖南大学, 2020.
21 Chen Z Y, Xiang Z Y, Sun F C. Journal of Mechanical Engineering, 2019, 55(24), 93 (in Chinese).
陈泽宇, 熊瑞, 孙逢春. 机械工程学报, 2019, 55(24), 93.
22 Qiu Y. Research on fault diagnosis method and application of lithium-ion battery for vehicles based on data driven. Master’s Thesis, Shandong Technology and Business University, China, 2022 (in Chinese).
邱艳. 基于数据驱动的车用锂离子电池故障诊断方法与应用研究. 硕士学位论文, 山东工商学院, 2022.
23 Kermani G, Sahraei E. Energies, 2017, 10(11), 1730.
24 Hofmann T, Müller R, Andrä H, et al. International Journal of Solids and Structures, 2016, 100, 456.
25 Cheng X B, Zhang R, Zhao C Z, et al. Advanced Science, 2016, 3(3), 1500213.
26 Behrou R, Maute K. Journal of the Electrochemical Society, 2017, 164(12), A2573.
27 Behrou R, Maute K. ECS Transactions, 2017, 77(11), 1163.
28 Bucci G, Swamy T, Chiang Y M, et al. Journal of Materials Chemistry A, 2017, 5(36), 19422.
29 Nitta N, Wu F, Lee J T, et al. Materials Today, 2015, 18(5), 252.
30 Chen X X, Liu K, Wang B G. Energy Storage Science and Technology, 2020, 9(2), 583 (in Chinese).
陈晓霞, 刘凯, 王保国. 储能科学与技术, 2020, 9(2), 583.
31 Lagadec M F, Zahn R, Wood V. Nature Energy, 2019, 4(1), 16.
32 Horiba T. Proceedings of the IEEE, 2014, 102(6), 939.
33 Sahraei E, Meier J, Wierzbicki T. Journal of Power Sources, 2014, 247, 503.
34 Dixon L A B. Material characterization of lithium ion batteries for crash safety. Master’s Thesis, Massachusetts Institute of Technology, USA, 2015.
35 Sahraei E, Campbell J, Wierzbicki T. Journal of Power Sources, 2012, 220, 360.
36 Kisters T, Sahraei E, Wierzbicki T. International Journal of Impact Engineering, 2017, 108, 205.
37 Ali M Y, Lai W J, Pan J. Journal of Power Sources, 2015, 273, 448.
38 Wang H, Kumar A, Simunovic S, et al. Journal of Power Sources, 2017, 341, 156.
39 Kukreja J, Nguyen T, Siegmund T, et al. Extreme Mechanics Letters, 2016, 9, 371.
40 Qiu Y, Jiang F. International Journal of Heat and Mass Transfer, 2022, 184, 122288.
41 An F Q, Zhao H L, Chen Z, et al. Chinese Journal of Engineering, 2019, 41(1), 22 (in Chinese).
安富强, 赵洪量, 程志, 等. 工程科学学报, 2019, 41(1), 22.
42 Xing B, Xiao F, Korogi Y, et al. Journal of Energy Storage, 2021, 43, 103270.
43 Xiao F Y. Direction-dependent internal damage characteristic and early diagnosis of prismatic Li-ion batteries under mechanical abuse. Master’s Thesis, Tsinghua University, China, 2021 (in Chinese).
肖飞宇. 方壳电池机械滥用变形损伤的方向相关性与早期诊断研究. 硕士学位论文, 清华大学, 2021.
44 Keshavarzi M M, Gilaki M, Sahraei E. International Journal of Mechanical Sciences, 2022, 219, 107090.
45 Li W. Research on modeling and state of charge estimation of lithium ion battery. Master’s Thesis, Dalian University of Technology, China, 2020 (in Chinese).
李伟. 锂离子电池建模与荷电状态估计研究. 硕士学位论文, 大连理工大学, 2020.
46 Wang Y D. Advanced Materials Industry, 2019(3), 15 (in Chinese).
汪以道. 新材料产业, 2019(3), 15.
47 Zou D Z, Chen H Z, Li X, et al. Power System Technology, 2022, 46(3), 1049 (in Chinese).
邹大中, 陈浩舟, 李勋, 等. 电网技术, 2022, 46(3), 1049.
48 Liu D T, Song Y C, Wu W, et al. Chinese Journal of Scientific Instrument, 2020, 41(11), 1 (in Chinese).
刘大同, 宋宇晨, 武巍, 等. 仪器仪表学报, 2020, 41(11), 1.
49 Zhu S B, Wang H. Advanced Materials Industry, 2021(6), 51.
朱素冰, 王昊. 新材料产业, 2021(6), 51.
50 Wang X D, Yin Z, Liu C, et al. Energy Storage Science and Technology, 2020, 9(S1), 52 (in Chinese).
王旭东, 尹钊, 刘畅, 等. 储能科学与技术, 2020, 9(S1), 52.
51 Pu W J, Lu W, Xie K, et al. Materials Reports, 2020, 34(7), 7036 (in Chinese).
浦文婧, 芦伟, 谢凯, 等. 材料导报, 2020, 34(7), 7036.
52 Wang C J, Chen X, Peng S K, et al. Journal of Aeronautical Materials, 2021, 41(3), 83 (in Chinese).
王超君, 陈翔, 彭思侃, 等. 航空材料学报, 2021, 41(3), 83.
53 Yan J D. Acta Aeronautica et Astronautica Sinica, 2014, 35(10), 2767 (in Chinese).
闫金定. 航空学报, 2014, 35(10), 2767.
54 Wang Z B, Li X Y, Yuan C G, et al. Journal of Mechanical Enginee-ring, 2021, 57(14), 52 (in Chinese).
王震坡, 李晓宇, 袁昌贵, 等. 机械工程学报, 2021, 57(14), 52.
55 Li Y, Yang Y, Liu R C, et al. Journal of China Coal Society, 2022, 47(5), 2120 (in Chinese).
李勇, 杨珏, 刘如成, 等. 煤炭学报, 2022, 47(5), 2120.
56 Xiong R, Yan L J, Wang J. Journal of Mechanical Engineering, 2021, 57(20), 161 (in Chinese).
熊瑞, 闫良基, 王榘. 机械工程学报, 2021, 57(20), 161.
57 Wang H R, Sun Y T, Jin Y. Journal of Mechanical Engineering, 2021, 57(14), 32 (in Chinese).
王怀铷, 孙宜听, 金阳. 机械工程学报, 2021, 57(14), 32.
58 Chen H S, Li H, Ma W T, et al. Energy Storage Science and Technology, 2022, 11(3), 1052 (in Chinese).
陈海生, 李泓, 马文涛, 等. 储能科学与技术, 2022, 11(3), 1052.
59 Chen H S, Liu C, Xu Y J, et al. Energy Storage Science and Technology, 2021, 10(5), 1477 (in Chinese).
陈海生, 刘畅, 徐玉杰, 等. 储能科学与技术, 2021, 10(5), 1477.
60 Ruiz V, Pfrang A, Kriston A, et al. Renewable and Sustainable Energy Reviews, 2018, 81, 1427.
61 Tian J, Tian C J, Wang Y T, et al. Energy Storage Science and Technology, 2018, 7(6), 1128 (in Chinese).
田君, 田崔钧, 王一拓, 等. 储能科学与技术, 2018, 7(6), 1128.
62 Wierzbicki T, Sahraei E. Journal of Power Sources, 2013, 241(6), 467.
63 Greve L, Fehrenbach C. Journal of Power Sources, 2012, 214, 377.
64 Sahraei E, Kahn M, Meier J, et al. 2015, 5(98), 80369.
65 Liu B, Jia Y, Li J, et al. Journal of Materials Chemistry A, 2018(43), 21475.
66 Li W, Xia Y, Chen G H, et al. Science China Technological Sciences, 2018, 61(10), 1472.
67 Sahraei E, Hill R, Wierzbicki T. Journal of Power Sources, 2012, 201, 307.
68 Xu J, Jia Y, Liu B, et al. Experimental Mechanics, 2018, 58(4), 633.
69 Wang H, Pan Y, Liu X, et al. Journal of Materials Chemistry A, 2022, 10(12), 6538. `
70 Sheikh M, Elmarakbi A, Rehman S. Journal of Energy Storage, 2020, 32, 101833.
71 Dong S J, Zhang X C, Wang Y L, et al. China Mechanical Engineering, 2022, 33(8), 915 (in Chinese).
董思捷, 张新春, 汪玉林, 等. 中国机械工程, 2022, 33(8), 915.
72 Wang H, Duan X, Liu B. Journal of Electrochemical Energy Conversion and Storage, 2021, 18(2), 021015.
73 Liu Y, Xia Y, Zhou Q. Energy Storage Materials, 2021, 40, 268.
74 Kovachev G, Ellersdorfer C, Gstrein G, et al. eTransportation, 2020, 6, 100087.
75 Mo F, Tian Y, Zhao S, et al. Engineering Failure Analysis, 2022, 137, 106399.
76 Wang L, Yin S, Zhang C, et al. Journal of Power Sources, 2018, 392, 265.
77 Yuan C, Wang L, Yin S, et al. Journal of Power Sources, 2020, 467, 228360.
78 Ji Y, Chen X, Wang T, et al. Journal of Energy Storage, 2020, 30, 101577.
79 Wang L, Jia Y, Xu J. Journal of Power Sources, 2021, 510, 230428.
80 Liu B, Yin S, Xu J. Applied Energy, 2016, 183, 278.
81 Ma T, Chen L, Liu S, et al. Journal of Power Sources, 2019, 437, 226928.
82 Deng J, Smith I, Bae C, et al. Journal of the Electrochemical Society, 2020, 167(9), 090550.
83 Gilaki M, Avdeev I. Journal of Power Sources, 2016, 328, 443.
84 Chen Y, Santhanagopalan S, Babu V, et al. Composite Structures, 2019, 218, 50.
85 Xia Y, Wierzbicki T, Sahraei E, et al. Journal of Power Sources, 2014, 267, 78.
86 Xu J, Liu B H, Wang X Y, et al. Applied Energy, 2016, 172, 180.
87 Kotter P, Kisters T, Schleicher A. Journal of Energy Storage, 2019, 26, 100948.
88 Zhu J, Luo H L, Li W, et al. Journal of Impact Engineering, 2019, 131, 78.
89 Jia Y, Yin S, Liu B, et al. Energy, 2019, 166, 951.
90 Li Y D, Wang W W, Lin C, et al. Energy, 2021, 215, 119050.
91 Zhang H, Zhou M, Hu L, et al. Engineering Failure Analysis, 2019, 104290.
92 Hu L L, Zhang Z W, Zhou M Z, et al. International Journal of Impact Engineering, 2020, 143, 103618.
93 Liu Y, Xia Y, Xing B, et al. International Journal of Impact Enginee-ring, 2022, 166, 104237.
94 Chen X P, Yuan Q, Wang T, et al. Engineering Failure Analysis, 2020, 115, 104667.
95 Yu D, Ren D, Dai K, et al. Journal of Energy Storage, 2021, 43, 103191.
96 Jones C, Li B, Tomar V. eTransportation, 2021, 8, 100109
97 Logakannan K P, Zhu F, Sypeck D, et al. International Journal of Impact Engineering, 2022, 170, 104352.
98 Noorsumar G, Rogovchenko S, Robbersmyr K G, et al. International Journal of Crashworthiness, DOI:10.1080/13588265.2021.1929760.
99 Liu B, Zhang J, Zhang C, et al. Engineering Failure Analysis, 2018, 91, 315.
100 Uerlich R, Ambikakumari S K, Bokelmann T, et al. International Journal of Crashworthiness, 2020, 25(6), 664.
101 Chombo P V, Laoonual Y, Wongwises S. Energies, 2021, 14(16), 4802.
102 Attar P, Galos J, Best A S, et al. Composite Structures, 2020, 237, 111937.
103 Shi Z, Chen G, Zhu L, et al. Automotive Innovation, 2020, 3(3), 260.
104 Huang Y, Guo W, Jia J, et al. Acta Mechanica Solida Sinica, 2021, 34(6), 862.
105 Li Z, Duan L B, Cheng A G, et al. Engineering Optimization, 2019, 51(8), 1393.
106 Haris A, Lee H P. International Journal of Crashworthiness, 2023, 28(4), 552.
107 Hao F, Lu X, Qiao Y, et al. Journal of Engineering Materials and Technology, 2017, 139(2), 021022.
108 Setiawan R, Salim M R. Journal of Engineering & Technological Sciences, 2017, 49(5), 587.
109 Zhang J, Ning L, Hao Y, et al. International Journal of Crashworthiness, 2021, 26(6), 651.
110 Chen P, Xia Y, Zhou Q. National Academy, DOI:10.4271/2022-01-0265.
111 Song X, Sun G, Li Q. Thin-Walled Structures, 2016, 109, 132.
112 Li Y, Xiong D, Wang L, et al. Composites Part B: Engineering, 2019, 163, 740.
113 Ghadianlou A, Abdullah S B. Thin-Walled Structures, 2013, 67, 25.
114 Dagdeviren S, Yavuz M, Kocabas M O, et al. International Journal of Crashworthiness, 2016, 21(5), 477.
115 Long C R, Yuen S, Nurick G N. Latin American Journal of Solids and Structures, 2019, 16, 226.
116 Mortazavi M A, Kheradpisheh A, Asgari M. International Journal of Crashworthiness, DOI:10.1080/13588265.2022.2075123.
117 Zou S, Dai S, Zhao W, et al. Journal of Automobile Engineering, 2020, 234(14), 3329.
118 Sun G, Li G, Zhou S, et al. Structural and Multidisciplinary Optimization, 2011, 44(1), 99.
119 Sun G, Xu F, Li G, et al. International Journal of Impact Engineering, 2014, 64, 62.
120 Baroutaji A, Sajjia M, Olabi A G. Thin-Walled Structures, 2017, 118, 137.
121 Wu S, Sun G, Wu X, et al. International Journal of Non-Linear Mechanics, 2017, 92, 41.
122 Fang J, Sun G, Qiu N, et al. Structural and Multidisciplinary Optimization, 2017, 55(3), 1091.
123 Zhou M, Hu L, Chen S, et al. Journal of Power Sources, 2021, 497, 229897.
124 Wang W W, Li Y D, Lin C, et al. Applied Energy, 2019, 251, 113365.
125 Yin H F, Ma S, Li H G, et al. eTransportation, 2021, 7, 100098.
126 Jia Y K, Li J N, Yuan C H, et al. Advanced Energy Materials, 2021, 11(18), 2003868.
127 Finegan D P, Zhu J E, Feng X N, et al. Joule, 2021, 5(2), 316.
128 Li W, Zhu J, Xia Y, et al. Joule, 2019, 3(11), 2703.
129 Zhao J, Ling H, Wang J, et al. iScience, 2022, 25(4), 104172.
130 Lee S, Han S, Han K H, et al. Journal of Energy Storage, 2021, 40, 102768.
[1] 童汇, 谢建龙, 张志谋, 郭忻, 喻万景, 郭学益, 黄承焕. 富锂锰基正极材料研究进展[J]. 材料导报, 2025, 39(3): 23080074-18.
[2] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[3] 刘显茜, 曹军磊, 李文辉, 曾朴. 蜘蛛网流道冷板冷却液对向流锂离子电池散热分析[J]. 材料导报, 2024, 38(4): 22070040-6.
[4] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[5] 夏二立, 叶拓, 邱飒蔚, 郭鹏程, 吴远志, 李落星. 不同加载路径和应变速率下挤压Mg-8.0Al-0.1Mn镁合金的力学响应行为[J]. 材料导报, 2024, 38(22): 24060132-8.
[6] 李东霖, 杨万亮, 曹锐, 杨雪, 徐梅松. 球型Si基碳包覆锂离子电池负极材料研究进展[J]. 材料导报, 2024, 38(21): 23020231-11.
[7] 郑永泉, 刘亚宁, 王国光, 张文魁, 颜旖旎, 董江群, 包大新, 夏阳. 高能量密度18650型锂离子电池制造生命周期评价[J]. 材料导报, 2024, 38(21): 23030169-7.
[8] 张涛, 郑家豪, 张新春, 吴晓囡, 黄子轩, 尹啸笛, 张晓翠, 张英杰. 不同挤压工况下圆柱形锂离子电池的压缩响应研究[J]. 材料导报, 2024, 38(20): 23090101-6.
[9] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 不同加载路径下挤压WE43镁合金的高速冲击力学响应及本构模型[J]. 材料导报, 2024, 38(20): 24050146-9.
[10] 李思盈, 周超. 海泡石纤维增强二氧化硅气凝胶的制备及性能[J]. 材料导报, 2024, 38(19): 23030233-9.
[11] 舒琦琪, 连斐, 梁陈利, 张庆堂. 锂离子电池硬炭负极的储锂机理及储锂性能优化进展[J]. 材料导报, 2024, 38(13): 23050097-10.
[12] 叶拓, 邱飒蔚, 夏二立, 郭鹏程, 吴远志, 李落星. 动态冲击载荷下7003铝合金的力学响应行为及力学本构建模[J]. 材料导报, 2024, 38(13): 24010026-8.
[13] 吴琼, 许咏杰, 钟展雄, 梁俊杰, 李垚. 锂离子电池硅碳复合负极结构的研究进展[J]. 材料导报, 2024, 38(11): 22110030-9.
[14] 吴强, 李正伟, 周建华, 张冬梅, 党锋, 刘文平, 苗蕾. 壳聚糖衍生碳包覆纳米硅复合材料锂离子电池性能研究[J]. 材料导报, 2024, 38(10): 23010052-6.
[15] 付举, 谢雯娜, 智茂永. 高镍三元正极材料容量衰退机理及改性研究进展[J]. 材料导报, 2023, 37(S1): 23040181-12.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed