Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22030271-8    https://doi.org/10.11896/cldb.22030271
  无机非金属及其复合材料 |
多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力
郭远臣, 刘芯州, 王雪*, 叶青, 向凯, 王锐
重庆三峡学院土木工程学院,重庆 404000
Multiscale Hybrid Steel Fiber Enhances the Impact Resistance and Crack Resistance of Cement-based Materials
GUO Yuanchen, LIU Xinzhou, WANG Xue*, YE Qing, XIANG Kai, WANG Rui
School of Civil Engineering, Chongqing Three Gorges University, Chongqing 404000, China
下载:  全 文 ( PDF ) ( 29934KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为更好地研究钢纤维混杂方式对水泥基材料的增强作用,本研究使用长度分别为6 mm(S)、13 mm(M)和35 mm(H)的三种钢纤维,进行单掺、双掺、三掺制备钢纤维增强水泥基材料,采用圆柱体试件进行落锤冲击试验,从冲击次数及耗能、破坏形态、裂缝宽度发展等方面探究混杂方式对水泥基材料抗冲击性能及阻裂能力的影响。试验结果表明:钢纤维从单掺到三掺,材料抗冲击性能逐渐增强。钢纤维单掺对水泥基材料强度及抗冲击性能提升效果依次为:M>H>S;双掺组合方式从优到劣为:M+H>S+M>S+H,当1.5%(体积分数,下同)M与0.5%H混掺时材料的增强、增韧效果最佳,28 d抗折强度为22.6 MPa,较单掺M和H分别提高了3.2%和31.4%,抗压强度为154.8 MPa,较单掺M和H分别提高了40.1%和65.5%,初裂与破坏冲击耗能比单掺M和H分别提高了23.5%、425%和36.7%、300%;三掺最优掺量为0.5%S、0.5%M和1%H,初裂和破坏冲击耗能比最优双掺M1.5H0.5组分别提高了33.3%、1.9%。双参数的Weibull分布可以合理地描述钢纤维混杂增强水泥基材料的初裂冲击次数(N1)和破坏冲击次数(N2)。S抑制微裂缝的产生与扩张,M和H阻止宏观裂缝在不同受荷阶段的发展,在不同结构层次、不同受荷阶段发挥逐级阻裂作用。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭远臣
刘芯州
王雪
叶青
向凯
王锐
关键词:  水泥基材料  钢纤维混杂  抗冲击性能  阻裂能力    
Abstract: In order to better study the reinforcement effect of hybrid steel fiber on cement-based materials, three kinds of steel fibers with lengths of 6 mm (S), 13 mm (M) and 35 mm (H) were used to prepare cylindrical specimens for drop weight impact test. The effects of steel fiber hybrid methods on the impact resistance and crack resistance of cement-based materials were explored from the aspects of impact times, energy consumption, failure pattern and crack width development. The test results show that the impact resistance of steel fiber increases gradually from single to triple mixing. The increasing effect of steel fiber on the strength and impact resistance of cement-based materials is M>H>S. The combination mode of steel fiber double mixing is M+H>S+M>S+H. When 1.5%M and 0.5%H were mixed, the strengthening and toughening effect of steel fiber was the best, and the bending strength of steel fiber was 22.6 MPa at 28 d, which was 3.2% and 31.4% higher than that of M and H alone. The compressive strength of 28 d was 154.8 MPa, which was 40.1% and 65.5% higher than that of M and H, respectively. The energy consumption of initial crack shock was 23.5% and 425% higher than that of two fibers, and the energy consumption of failure shock was 36.7% and 300% higher than that of two fibers, respectively. The optimal dosage of the three kinds of steel fibers was 0.5%S, 0.5%M and 1%H, respectively, and the energy consumption of initial cracking and failure shock was 33.3% and 1.9% higher than that of the optimal dual-mixing group (M1.5H0.5), respectively. The two parameter Weibull distribution can reasonably describe N1 and N2 of steel fiber hybrid reinforced cement-based materials. S inhibits the creation and expansion of microcracks, while M and H prevent the development of macroscopic cracks at different stages of loading. The various fibers act as progressive crack arrestors at different structural levels and in different loading stages.
Key words:  cement-based material    hybrid steel fiber    impact resistance    crack resistance capacity
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TU528.572  
基金资助: 重庆市教育委员会科学技术研究项目(KJZD-K201901201;KJZD-202101201);重庆青年·拔尖人才(CQYC201905086);万州区创新创业示范团队;重庆市三峡水库岸坡与工程结构灾变防控工程技术研究中心开放基金项目(SXAPGC21MS05)
通讯作者:  *王雪,重庆三峡学院土木工程学院副教授,2009年取得昆明理工大学材料加工工程专业硕士学位。主持参与科研项目10项,其中国家自然科学基金1项,省部级项目6项;发表学术论文30余篇,其中SCI/EI检索10余篇;授权国家发明专利1项,实用新型2项。主要从事土木工程材料、废弃物资源化等方向研究工作。xuewang2016@sina.com   
作者简介:  郭远臣,重庆三峡学院土木工程学院教授、硕士研究生导师,2010年取得昆明理工大学材料加工工程专业博士学位。重庆市首批重庆英才·青年拔尖人才,国家自然科学基金评议专家,重庆市万州区科技人才专项资金资助者。近五年来,主持完成科研项目15项,以第一完成人获得重庆市科技进步三等奖、中国产学研合作创新成果二等奖、中国交通运输协会科学技术进步三等奖;出版专著一部。主要从事环境与建筑功能材料、工程结构裂缝智能修复等方向的研究。
引用本文:    
郭远臣, 刘芯州, 王雪, 叶青, 向凯, 王锐. 多尺度钢纤维混杂增强水泥基材料抗冲击性能及阻裂能力[J]. 材料导报, 2024, 38(2): 22030271-8.
GUO Yuanchen, LIU Xinzhou, WANG Xue, YE Qing, XIANG Kai, WANG Rui. Multiscale Hybrid Steel Fiber Enhances the Impact Resistance and Crack Resistance of Cement-based Materials. Materials Reports, 2024, 38(2): 22030271-8.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22030271  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22030271
1 Zhou K T, Fang Z, Deng S J, et al. In:Proceedings of the 21st National Symposium on Modern Structural Engineering. Shijiazhuang, 2021, pp. 348(in Chinese).
周科廷, 方震, 邓盛杰, 等. 第二十一届全国现代结构工程学术研讨会论文集. 石家庄, 2021, pp. 348.
2 Prem P R, Murthy A R, Bharatkumar B H, et al. Magazine of Concrete Research, 2015, 67(18), 1.
3 Peng G F, Niu X J, Zhao Y L. Journal of Building Materials, 2016, 19(6), 1013(in Chinese).
朋改非, 牛旭婧, 赵怡琳. 建筑材料学报, 2016, 19(6), 1013.
4 Hung C C, Chen Y T, Yen C H. Construction and Building Materials, 2020, 260, 119944.
5 Gou H X, Zhu H B, Zhou H Y, et al. Journal of the Chinese Ceramic Society, 2020, 48(11), 1756(in Chinese).
苟鸿翔, 朱洪波, 周海云, 等. 硅酸盐学报, 2020, 48(11), 1756.
6 Wu Z M, Shi C J, Khayat K H. Composites Part B, 2019, 174, 107021.
7 Huang Z Y, Wu Z. Highway Engineering, 2018, 43(2), 84(in Chinese).
黄政宇, 吴峥. 公路工程, 2018, 43(2), 84.
8 Jung-Jun P, Doo-Yeol Y, Gi-Joon P, et al. Materials, 2017, 10(2), 118.
9 Yoo D Y, Kang S T, Yoon Y S. Construction and Building Materials, 2014, 64, 67.
10 Song W M, Yin J. Materials, 2016, 9(8), 704.
11 Rambo D A S, Silva F D A, Filho R D T. Cement and Concrete Compo-sites, 2014, 54, 100.
12 Chi Y, Yin C R, Xu L H, et al. Journal of the Chinese Ceramic Society, 2021, 49(11), 2331(in Chinese).
池寅, 尹从儒, 徐礼华, 等. 硅酸盐学报, 2021, 49(11), 2331.
13 Okeh C A O, Begg D W, Barneett S J, et al. Construction and Building Materials, 2019, 202, 753.
14 Li L, Cao M L, Feng J Q. Journal of Basic Science and Engineering, 2018, 26(4), 843(in Chinese).
李黎, 曹明莉, 冯嘉琪. 应用基础与工程科学学报, 2018, 26(4), 843.
15 Zhang B M, Li J, Li X. Journal of Materials Engineering, 2014(7), 107(in Chinese).
张博明, 李嘉, 李煦. 材料工程, 2014(7), 107.
16 Wu K R, Li S J. Journal of Building Materials, 2005(6), 599(in Chinese).
吴科如, 李淑进. 建筑材料学报, 2005(6), 599.
17 Zhang X Z, Sun W, Zhang Q Q, et al. Journal of Southeast University(Natural Science Edition), 2008(1), 156(in Chinese).
张秀芝, 孙伟, 张倩倩, 等. 东南大学学报(自然科学版), 2008(1), 156.
18 Wei J Y, Liu H W, Zhang Y. Concrete, 2017(12), 51(in Chinese).
魏金源, 刘宏伟, 张勇. 混凝土, 2017(12), 51.
19 Li Y F, Wang H F, Syu J Y, et al. Materials, 2021, 14(19), 5881.
20 Xia D T, Zhu F, Fu M, et al. Concrete, 2020(11), 31(in Chinese).
夏冬桃, 朱峰, 付敏, 等. 混凝土, 2020(11), 31.
21 Rai B, Singh N K. Journal of Building Engineering, 2021, 44, 2352.
22 Yu R, Spiesz P, Brouwers H J H. Construction and Building Materials, 2014, 68, 158.
23 Ozyurt N, Mason T, Shah S P. Cement and Concrete Composites, 2007, 29(2), 70.
24 Alberti M G, Enfedaque A, Galvez J C. Cement and Concrete Compo-sites, 2017, 77, 29.
25 Ding Y N, Wang Q, Lin Y D. Acta Materiae Compositae Sinica, 2017, 34(8), 1853(in Chinese).
丁一宁, 王卿, 林宇栋. 复合材料学报, 2017, 34(8), 1853.
26 Wang Q X, Ding Y N, Zhang Y L, et al. Structural Concrete, 2020, 22(1), 503.
27 Murali G, Gayathri R, Ramkumar V R, et al. KSCE Journal of Civil Engineering, 2018, 22(1), 257.
28 Rahmani T, Kiani B, Shekarchi M, et al. Construction & Building Materials, 2012, 37, 360.
29 Chen X Y, Ding Y N, Azebedo C. Journal of Central South University of Technology, 2011, 18(5), 1677.
30 Li D, Ding Y N. Journal of Vibration and Shock, 2017, 36(2), 123(in Chinese).
李冬, 丁一宁. 振动与冲击, 2017, 36(2), 123.
31 Nia A A, Hedayatian M, Nili H, et al. International Journal of Impact Engineering, 2012, 46, 62.
32 Sun W W, Zhang Z Y, Dong H L, et al. Concrete, 2016(12), 86(in Chinese).
孙巍巍, 张正洋, 董浩林, 等. 混凝土, 2016(12), 86.
33 Ding Y N, Li D, Zhang Y L, et al. Construct Build Mater, 2017, 136, 495.
34 Wang L, Xu L H, Deng F Q, et al. Journal of Building Materials, 2020, 23(4), 865(in Chinese).
王力, 徐礼华, 邓方茜, 等. 建筑材料学报, 2020, 23(4), 865.
35 Wang C Q, Wu K R. Journal of Building Materials, 2005(3), 250(in Chinese).
王成启, 吴科如. 建筑材料学报, 2005(3), 250.
36 Xu L H, Deng F Q, Chi Y. Construction and Building Materials, 2017, 145, 619.
[1] 李华伟, 王倩, 王荣, 刘飞宇, 谢汶桦, 刘锋. 复合吸波剂增强钢渣-水泥基双层结构吸波材料的制备[J]. 材料导报, 2024, 38(23): 23080003-8.
[2] 陈君, 左晓宝, 邹欲晓, 黎亮. 硫酸盐-氯盐环境下粉煤灰-水泥砂浆物相演变及定量分析[J]. 材料导报, 2024, 38(22): 23080011-7.
[3] 张铖, 王振地, 史鑫宇, 李庭忠, 孙国星, 梁瑞. 超吸水树脂对高性能水泥基复合材料收缩和水化的影响[J]. 材料导报, 2024, 38(22): 23090194-7.
[4] 蔡心杰, 徐亦冬, 王玉全, 武金婷. 采用持久发光材料为内部光源的光催化复合材料研究进展[J]. 材料导报, 2024, 38(15): 23030157-10.
[5] 杨志强, 李化建, 温家馨, 董昊良, 易忠来, 黄法礼, 王振. 高速铁路无砟轨道水泥基材料与结构的疲劳损伤及服役寿命综述[J]. 材料导报, 2023, 37(S1): 22100219-8.
[6] 庞超明, 唐志远, 杨志远, 黄鹏. 水泥基材料中的早强剂及其作用机理综述[J]. 材料导报, 2023, 37(9): 21110247-11.
[7] 徐阳晨, 邢国华, 赵嘉华. 碱矿渣水泥基材料的干燥收缩及减缩技术研究进展[J]. 材料导报, 2023, 37(7): 21060180-11.
[8] 赵毅, 王佳, 周娇, 王梦雨, 杨臻. 水泥基超疏水材料自清洁技术研究进展[J]. 材料导报, 2023, 37(6): 21100243-17.
[9] 梁龙, 张鑫, 刘巧玲. 浆体流变性能对超高延性水泥基材料性能的影响[J]. 材料导报, 2023, 37(5): 21070107-7.
[10] 杨海涛, 卞洪健, 刘娟红. 水泥基材料中SAP的吸水、释水和再膨胀行为综述[J]. 材料导报, 2023, 37(4): 21030240-7.
[11] 余波, 黄俊铭, 卢金马, 杨绿峰. 水泥基材料中钢筋脱钝临界氯离子浓度的加速测试装置及方法[J]. 材料导报, 2023, 37(3): 21030054-6.
[12] 刘娟红, 邹敏, 李康, 谢永江. 碳酸盐环境下水泥基材料性能劣化与腐蚀破坏的研究进展[J]. 材料导报, 2023, 37(19): 22020132-9.
[13] 徐鹏, 张轩翰, 明高林, 施诗. 纳米改性水泥基材料功能化研究进展[J]. 材料导报, 2023, 37(16): 21080265-10.
[14] 朱伶俐, 杨章, 赵宇, 管学茂, 武喜凯. 钢渣-矿渣复合水泥基材料3D打印性能[J]. 材料导报, 2023, 37(12): 21100196-6.
[15] 黄燕, 胡翔, 史才军, 吴泽媚. 混凝土中水泥浆体与骨料界面过渡区的形成和改进综述[J]. 材料导报, 2023, 37(1): 21050009-12.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed