Please wait a minute...
材料导报  2024, Vol. 38 Issue (2): 22040020-5    https://doi.org/10.11896/cldb.22040020
  金属与金属基复合材料 |
金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能
周后明*, 周金虎, 刘刚, 陈皓月
湘潭大学机械工程学院,湖南 湘潭 411105
Preparation and Cutting Performance of Si3N4 Ceramic Tool Toughened by Intermetallic Compound MoSi2 and SiC Whisker
ZHOU Houming*, ZHOU Jinhu, LIU Gang, CHEN Haoyue
School of Mechanical Engineering, Xiangtan University, Xiangtan 411105, Hunan, China
下载:  全 文 ( PDF ) ( 19848KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为进一步提高Si3N4陶瓷刀具的强度和韧性,克服单一增韧方式以及金属粘结剂增韧的局限性,本工作利用金属间化合物协同晶须对其增韧补强,将MoSi2颗粒和SiC晶须添加到Si3N4陶瓷基体中,制备出Si3N4/MoSi2/SiCw(SMC)复合陶瓷刀具材料。结果表明:SiC晶须的加入可以有效提高Si3N4陶瓷的断裂韧性,MoSi2的加入可以显著提升Si3N4陶瓷的抗弯强度。连续干切削45#淬火钢时,相较于商用刀具YBC251,SMC复合陶瓷刀具的寿命及切削稳定性提升显著。其中,添加了SiC晶须的SMC3(MoSi2 10%(未作特别说明时均为质量分数),SiCw 10%)及SMC2(MoSi2 0%,SiCw 10%)刀具的寿命均比未添加SiCw的SMC1(MoSi2 10%,SiCw 0%)更长。随着切削深度的增加,未添加MoSi2的SMC2易出现崩刃现象,切削稳定性不如协同增韧的SMC3。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
周后明
周金虎
刘刚
陈皓月
关键词:  陶瓷刀具  协同增韧  切削  力学性能  微观结构    
Abstract: In order to further improve the strength and toughness of Si3N4 ceramic tool, overcome the limitations of single toughening method and metal binder toughening, MoSi2 particles and SiC whiskers were added to the Si3N4 ceramic matrix to prepare Si3N4/MoSi2/SiCw (SMC) compo-site ceramic tool material by toughening and reinforcing them with intermetallic compounds and whiskers. The results show that the addition of SiC whisker can effectively improve the fracture toughness of Si3N4 ceramics, and the addition of MoSi2 can significantly improve the bending strength of Si3N4 ceramics. In continuous dry cutting of 45# quenched steel, the tool life and cutting reliability of SMC composite ceramic tool are significantly improved compared with commercial tool YBC251. Among them, the tool life of SMC3 (MoSi2 10wt%, SiCw 10wt%) and SMC2 (MoSi2 0wt%, SiCw 10wt%) with SiC whisker is better than that of SMC1 (MoSi2 10wt%, SiCw 0wt%) without SiCw. With the increase of cutting depth, SMC2 without MoSi2 is prone to chipping, and the cutting reliability is not as good as SMC3 with synergistic toughening.
Key words:  ceramic tool    synergistic toughening    cutting    mechanical property    microstructure
出版日期:  2024-01-25      发布日期:  2024-01-26
ZTFLH:  TG75  
基金资助: 湖南省教育厅项目(21A0117);湖南省自然科学基金(2020JJ4585);国家自然科学基金(51775470; 51775469)
通讯作者:  *周后明,湘潭大学机械工程学院教授、博士研究生导师。2008年于广东工业大学获工学博士学位。主要从事高速加工技术及其工具、刀具与刀具材料方面的研究。发表论文50余篇,包括《中国机械工程》、Ceramics International等。zhouhouming@xtu.edu.cn   
引用本文:    
周后明, 周金虎, 刘刚, 陈皓月. 金属间化合物MoSi2协同SiC晶须增韧Si3N4陶瓷刀具的制备及切削性能[J]. 材料导报, 2024, 38(2): 22040020-5.
ZHOU Houming, ZHOU Jinhu, LIU Gang, CHEN Haoyue. Preparation and Cutting Performance of Si3N4 Ceramic Tool Toughened by Intermetallic Compound MoSi2 and SiC Whisker. Materials Reports, 2024, 38(2): 22040020-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/cldb.22040020  或          https://www.mater-rep.com/CN/Y2024/V38/I2/22040020
1 Liang T. Equipment Machinery, 2019(3), 38(in Chinese).
梁天. 装备机械, 2019(3), 38.
2 Zou B, Huang C Z, Liu H L, et al. Machining Science and Technology, 2010, 934(886), 324.
3 Jin Z H, Luo W J. Materials Science & Engineering, 2006, 435(6), 71.
4 Kim W, Oh H S, Shon I J. International Journal of Refractory Metals and Hard Materials, 2015, 48, 376.
5 Tian X H, Zhao J, Zhu N B, et al. Materials Science & Engineering, 2014, 596, 255.
6 Tian L, Hou Q L, Wang Y X, et al. Materials Express, 2020, 10(6), 928.
7 Li S B, Wen G W, Zhang B S. Materials Science & Engineering, 2002, 332(1-2), 37.
8 Deng J X, Liu L L, Liu J H. International Journal of Machine Tools & Manufacture, 2005, 45(12), 1393.
9 Naik N K, Kumar S, Ratnaveer D, et al. International Journal of Da-mage Mechanics, 2013, 22(2), 145.
10 Li C W, Li J. Mining and Metallurgical Engineering, 2011, 31(5), 91.
11 Zhang M N, Wang X, Alexander D, et al. Advanced Engineering Mate-rials, 2020, 22(3), 1900953.
12 Guo X L, Zhu Z L. Advances in Applied Ceramics, 2018, 117(1-2), 16.
13 Xu W W, Yuan J T, Yin Z B, et al. Ceramics International, 2018, 44(16), 19872.
14 Kwon H J, Suh C Y, Kim W. Ceramics International, 2015, 41(3), 4223.
15 Liu B Q, Wei W Q, Gan Y Q, et al. International Journal of Refractory Metals and Hard Materials, 2020, 93, 105372.
16 Yang Z R, Li X X, Zhang X J, et al. Powder Metallurgy, 2016, 59(2), 112.
17 Sciti D, Celotti G C, Pezzott G, et al. Journal of Composite Materials, 2007, 41(21), 2585.
18 Shang G D, Wang B L. International Journal of Applied Ceramic Techno-logy, 2020, 17(2), 501.
19 Ahmadian M, Wexler D, Calka A, et al. Materials Science Forum, 2007, 539(1), 962.
[1] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[2] 薛赞, 晋玺, 毛周朱, 兰爱东, 王大雨, 乔珺威. 热机械处理提高Cr47Ni33Co10Fe10多组元共晶合金力学性能[J]. 材料导报, 2025, 39(3): 23120100-6.
[3] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[4] 刘晓楠, 张春晓, 王世合, 张高展, 毛继泽, 曹少华, 刘国强. 养护制度对添加纳米SiO2超高性能混凝土动静态力学性能的影响[J]. 材料导报, 2025, 39(2): 23070188-7.
[5] 景宏君, 张超伟, 高萌, 丁仁红, 李毅民, 康明珂, 周子涵, 朱韶峰. 骨架密实型水泥稳定煤矸石级配设计与性能研究[J]. 材料导报, 2025, 39(2): 22040252-7.
[6] 曹雷刚, 侯鹏宇, 杨越, 蒙毅, 刘园, 崔岩. AlCoCrFeNix高熵合金高温热处理微观组织演变及力学性能[J]. 材料导报, 2025, 39(2): 23120247-7.
[7] 马豪达, 白银, 陈波, 葛龙甄, 白延杰, 张丰. 水胶比和橡胶掺量对砂浆力学性能及能量演化规律的影响[J]. 材料导报, 2025, 39(1): 23120226-7.
[8] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[9] 王子健, 孙舒蕾, 肖寒, 冉旭东, 陈强, 黄树海, 赵耀邦, 周利, 黄永宪. 搅拌摩擦固相沉积增材制造研究现状[J]. 材料导报, 2024, 38(9): 22100039-16.
[10] 白云官, 吉小超, 李海庆, 魏敏, 于鹤龙, 张伟. 原位合成的钛合金@CNTs粉体SPS制备TiC/Ti复合材料的微结构与性能[J]. 材料导报, 2024, 38(9): 22120175-7.
[11] 邝亚飞, 李永斌, 张艳, 陈峰华, 孙志刚, 胡季帆. SPS烧结Ni-Mn-In合金的马氏体相变和力学性能研究[J]. 材料导报, 2024, 38(9): 23110107-6.
[12] 王艳, 高腾翔, 张少辉, 李文俊, 牛荻涛. 不同形态回收碳纤维水泥基材料的力学与导电性能[J]. 材料导报, 2024, 38(9): 23010043-9.
[13] 常川川, 李菊, 李晓红, 金俊龙, 张传臣, 季亚娟. 热处理对同质异态TC17钛合金线性摩擦焊接头的影响[J]. 材料导报, 2024, 38(8): 22080152-5.
[14] 郑思铭, 李蔚, 杨函瑞, 陈松, 魏取福. 3D打印聚乳酸的改性研究与应用进展[J]. 材料导报, 2024, 38(8): 22100107-10.
[15] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed