Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (8): 1224-1229    https://doi.org/10.11896/j.issn.1005-023X.2018.08.004
  材料研究 |
醇胺改性氧化石墨烯的制备及二氧化硫吸附性能
李金伟, 黄莉兰, 辛清萍, 叶卉, 赵莉芝, 丁晓莉, 林立刚, 王少飞, 张玉忠
天津工业大学材料科学与工程学院,省部共建分离膜与膜过程国家重点实验室,天津 300387
Preparation of Alcoholamine-modified Graphene Oxide with an Application to Sulfur Dioxide Adsorption
LI Jinwei, HUANG Lilan, XIN Qingping, YE Hui, ZHAO Lizhi, DING Xiaoli, LIN Ligang, WANG Shaofei, ZHANG Yuzhong
State Key Laboratory of Separation Membranes and Membranes Processes, School of Material Science and Engineering,Tianjin Polytechnic University, Tianjin 300387
下载:  全 文 ( PDF ) ( 2961KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 固体吸附剂在烟道气脱硫方面具有很大的潜力。以氧化石墨烯(GO)为基底材料,通过乙醇胺(MEA)、二乙醇胺(DEA)和三乙醇胺(TEA)对氧化石墨烯进行改性,得到了GO-MEA、GO-DEA和GO-TEA三种用于吸附SO2的固体吸附剂。利用扫描电镜(SEM)、傅里叶变换红外光谱(FT-IR)、X射线光电子能谱(XPS)、能量色散X射线能谱(EDS)、元素分析(EA)等手段对其进行表征,并采用称重法测定了醇胺改性氧化石墨烯对SO2气体的吸附性能。结果表明,醇胺改性氧化石墨烯对SO2的吸附性能相比未改性氧化石墨烯有较大提高,其中GO-DEA的SO2吸附性能最好,15 h后平衡吸附量达到188.5 mg/g。在130 ℃、真空条件下进行解吸,经过五次循环之后吸附量依然保持在165.3 mg/g。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
李金伟
黄莉兰
辛清萍
叶卉
赵莉芝
丁晓莉
林立刚
王少飞
张玉忠
关键词:  氧化石墨烯  醇胺  SO2  吸附    
Abstract: Solid adsorbent has displayed great application potential in the field of flue gas desulfurization. In this study, using GO as substrate material and the alcoholamines such as ethanolamine (MEA), diethanolamine (DEA) and triethanolamine (TEA) as modifiers, we prepared GO-MEA,GO-DEA and GO-TEA as adsorbents for SO2, and conducted the characterization by means of scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FT-IR), X-ray photoelectron spectroscopy (XPS), energy dispersive X-ray spectrometry (EDS) and elemental analysis (EA). The SO2adsorption capacities of the products were also determined by gravimetric method. Our experiment validated the significantly improved SO2 adsorption capacities of the three types of alcoholamine-immobilized GOs compared to ordinary GO. In particular, GO-DEA exhibits promising adsorption performance toward SO2, as the equilibrium adsorption capacity within 15 h is 188.5 mg/g initially and 165.3 mg/g after five cycles in which the desorption was processed under vacuum at 130 ℃.
Key words:  graphene oxide    alcoholamine    SO2    adsorption
出版日期:  2018-04-25      发布日期:  2018-05-11
ZTFLH:  TQ028  
基金资助: 国家自然科学基金(21676201;51503146)
通讯作者:  张玉忠:通信作者,男,1963年生,博士,教授,主要研究方向为功能膜材料 E-mail:zhangyz2004cn@vip.163.com   
作者简介:  李金伟:男,1990年生,硕士研究生,主要研究方向为脱硫用二维吸附材料 E-mail:2710997792@qq.com
引用本文:    
李金伟, 黄莉兰, 辛清萍, 叶卉, 赵莉芝, 丁晓莉, 林立刚, 王少飞, 张玉忠. 醇胺改性氧化石墨烯的制备及二氧化硫吸附性能[J]. 《材料导报》期刊社, 2018, 32(8): 1224-1229.
LI Jinwei, HUANG Lilan, XIN Qingping, YE Hui, ZHAO Lizhi, DING Xiaoli, LIN Ligang, WANG Shaofei, ZHANG Yuzhong. Preparation of Alcoholamine-modified Graphene Oxide with an Application to Sulfur Dioxide Adsorption. Materials Reports, 2018, 32(8): 1224-1229.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.08.004  或          https://www.mater-rep.com/CN/Y2018/V32/I8/1224
1 Xiong Y W. Harm of SO2 pollution and progress of its control techniques in our country[J].Ming Safety & Environmental Protection,2000,27(3):37(in Chinese).
熊云威.我国SO2污染危害及其治理技术的进展[J].矿业安全与环保,2000,27(3):37.
2 Pan D, Yu R, Bao J, et al. Emission and formation characteristics of aerosols from ammonia-based wet flue gas desulfurization[J].Energy & Fuels,2015,30(1):666.
3 Zhang Y, Gao Y H, Wang G D, et al. Seawater flue gas desulfurization and post-desulfurization seawater recovery[C]∥Advanced Materials Research. Switzerland: Trans Tech Publications,2011:662.
4 Lee K T, Bhatia S, Mohamed A R, et al. Optimizing the specific surface area of fly ash-based sorbents for flue gas desulfurization[J].Chemosphere,2006,62(1):89.
5 Rajendra S, Raghunath C V, Mondal M K. New experimental data for absorption of SO2 into DMA solution[J].Environmental Progress & Sustainable Energy,2016,35(5):1298.
6 Zhao Y, Zhang X, Zhen Y, et al. Novel alcamines ionic liquids based solvents: Preparation, characterization and applications in carbon dioxide capture[J].International Journal of Greenhouse Gas Control,2011,5(2):367.
7 Tailor R, Ahmadalinezhad A, Sayari A. Selective removal of SO2 over tertiary amine-containing materials[J].Chemical Engineering Journal,2014,240:462.
8 Khatri R A, Chuang S S C, Soong Y, et al. Thermal and chemical stability of regenerable solid amine sorbent for CO2 capture[J].Energy & Fuels,2006,20(4):1514.
9 Gadipelli S, Guo Z X. Graphene-based materials: Synthesis and gas sorption, storage and separation[J].Progress in Materials Science,2015,69:1.
10 Chen D, Feng H, Li J. Graphene oxide: Preparation, functionalization, and electrochemical applications[J].Chemical Reviews,2012,112(11):6027.
11 Seredych M, Bandosz T J. Effects of surface features on adsorption of SO2 on graphite oxide/Zr(OH)4 composites[J].The Journal of Physical Chemistry C,2010,114(34):14552.
12 Long Y, Zhang C, Wang X, et al. Oxidation of SO2 to SO3catalyzed by graphene oxide foams[J].Journal of Materials Chemistry,2011,21(36):13934.
13 Hummers Jr W S, Offeman R E. Preparation of graphitic oxide[J].Journal of the American Chemical Society,1958,80(6):1339.
14 Yang H, Zhao X J, Zhao J G. Preparation and structural characte-rization of graphene oxide by pressurized oxidation[J].Journal of Shanxi Datong University (Natural Science Edition),2014,30(6):39(in Chinese).
杨辉,赵小娟,赵建国.氧化石墨烯制备及其结构表征[J].山西大同大学学报:自然科学版,2014,30(6):39.
15 Wan W, Li L, Zhao Z, et al. Ultrafast fabrication of covalently cross-linked multifunctional graphene oxide monoliths[J].Advanced Functional Materials,2014,24(31):4915.
16 王保安, 刘梅. 胺类化合物的碱性强弱顺序[J].焦作师范高等专科学校学报,2003,19(4):58.
17 Liu X L, Guo J X, Chu Y H, et al. Desulfurization performance of iron supported on activated carbon[J].Fuel,2014,123:93.
18 Zhao L, Bi S, Pei J, et al. Adsorption performance of SO2 over ZnAl2O4 nanospheres[J].Journal of Industrial and Engineering Chemistry,2016,41:151.
19 Lee H J, Lee K I, Kim M, et al. Diamine-anchored polystyrene re-sins for reversible SO2 adsorption[J].ACS Sustainable Chemistry & Engineering,2016,4(4):2012.
20 Yun S, Lee H, Lee W E, et al. Multiscale textured, ultralight graphene monoliths for enhanced CO2 and SO2 adsorption capacity[J].Fuel,2016,174:36.
[1] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[2] 丁亚荣, 李灿华, 章蓝月, 李家茂, 何川, 李明晖, 朱伟长, 韦书贤. 硫化纳米零价铁复合材料对Cu(Ⅱ)去除性能的研究[J]. 材料导报, 2025, 39(2): 23070123-8.
[3] 崔守成, 徐洪波, 彭楠. 金属-有机骨架材料在气体吸附纯化领域的应用研究进展[J]. 材料导报, 2025, 39(1): 23110102-9.
[4] 宋学锋, 王楠. 原位合成LDHs@地聚物复合材料的矿物组成及除磷效果[J]. 材料导报, 2024, 38(8): 22110080-6.
[5] 张鹏, 陈星月, 李素芹, 任志峰, 李怡宏, 赵爱春, 何奕波. 粉煤灰制备沸石的技术及应用现状[J]. 材料导报, 2024, 38(7): 22100063-14.
[6] 邱毅, 邹江峰, 马智炜, 罗强, 刘忠华, 陈洋, 代逸飞. 表面基团对Ti3C2Tx吸附NO性能影响的第一性原理研究[J]. 材料导报, 2024, 38(5): 22060163-5.
[7] 宋江燕, 翟涛, 温倩, 周融融, 杨为森, 简绍菊, 潘文斌, 胡家朋. 磁性Ce-La-MOFs@Fe3O4的除氟性能[J]. 材料导报, 2024, 38(4): 22080185-7.
[8] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[9] 李佳敏, 常麟晖, 陈步明, 黄惠, 郭忠诚. 氯化物体系单槽双室电积锰工艺研究[J]. 材料导报, 2024, 38(3): 22010135-6.
[10] 陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
[11] 李天泽, 马应霞, 李淼石, 叶晓飞, 柴小军. MOFs基材料对水中重金属离子的吸附研究进展[J]. 材料导报, 2024, 38(23): 23110167-12.
[12] 陈尚龙, 刘恩岐, 赵节昌, 陈安徽, 刘辉, 苗敬芝. 羧基化柚子皮吸附Cd2+的性能与机制[J]. 材料导报, 2024, 38(20): 23060114-7.
[13] 张理元, 张菁菁, 吴娜, 沈如倩. 氟化对钛锂离子筛制备及性能的影响[J]. 材料导报, 2024, 38(18): 22090255-8.
[14] 陈一萍, 郑朝洪, 王禹笙, 苏薇薇. 含铁纳米纤维电极去除水中孔雀石绿[J]. 材料导报, 2024, 38(18): 23020120-6.
[15] 贾震震, 李一鸣, 郑智宏, 张静云, 程璇, 郑煜铭, 邵再东. 柔性高比表静电纺碳纳米纤维制备及其吸附VOCs性能研究[J]. 材料导报, 2024, 38(18): 23040151-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed