Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 947-950    https://doi.org/10.11896/j.issn.1005-023X.2018.06.017
  材料研究 |
锌含量对铝基可降解合金降解速率的影响
郭思文, 邵媛, 古正富, 任国富, 张华光
长庆油田分公司油气工艺研究院,西安 710018
Influence of Zn Content on the Degradation Rates of Degradable Aluminum Alloys
GUO Siwen, SHAO Yuan, GU Zhengfu, REN Guofu, ZHANG Huaguang
Oil and Gas Technology Institute of Changqing Oilfield Company, Xi’an 710018
下载:  全 文 ( PDF ) ( 1585KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以Al-Mg-Ga-In-Sn合金为基体,采用熔融工艺制备了不同Zn含量的可降解铝合金材料。通过X射线衍射仪(XRD)、扫描电子显微镜(SEM)和电化学工作站分析了Zn含量对可降解铝合金相组成、显微结构和电化学参数的影响规律。降解速率的测定在90 ℃恒温的蒸馏水中进行。结果表明:合金析出相的组成、数量和形貌是影响合金降解速率改变的重要因素。随着Zn元素的加入,主要析出相由短棒状的Mg2Sn转变为树枝状或网络状的Mg32(AlZn)49,而合金的降解总是沿着细小的球状富Mg、In析出相开始并围绕其向周围扩展。然而大量的Mg被Mg32(AlZn)49相结合,使得腐蚀区域明显减少,降解速率降低,因此,Mg32(AlZn)49起到延缓合金降解的作用。此外,随着Zn含量的增加,合金的腐蚀电位均不同程度地正移,腐蚀电流逐渐减小,使得合金的腐蚀倾向减弱,降解速率降低。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭思文
邵媛
古正富
任国富
张华光
关键词:  锌含量  相组成  微观结构  极化曲线  降解速率    
Abstract: The degradable aluminum alloys of different Zn content were prepared by melting technique based on the Al-Mg-Ga-In-Sn alloy. The effect of different Zn content on phase compositions, microstructure and electrochemical parameters of the degradable aluminum alloys were analyzed by X-ray diffraction (XRD), scanning electron microscope (SEM) and electrochemical workstation. In addition, the degradation rates were conducted in distilled water at 90 ℃. Experimental results showed that the composition, amount and morphology of the precipitates in alloys played an important role in changing the degradation rates. As the increa-sing Zn content, the main precipitation was changed to the dendritic or the network Mg32(AlZn)49 from the clavate Mg2Sn. The degradation of alloys always started along the globular phase which was rich in Mg-In, and spread around it. Obviously, a large amount of Mg was combined into the Mg32(AlZn)49 precipitation, which made both the corrosion proportion and the degradation rate decrease. Therefore, the Mg32(AlZn)49 can delay the degradation of alloys. Moreover, the Ecorr of alloys was shifted to positive values in varying degrees and the icorr decreased gradually. For this reason, the corrosion trend of alloys weakened and the degradation rate decreased in the end.
Key words:  Zn content    phase compositions    microstructure    polarization curves    degradation rates
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TU512.4  
基金资助: 低渗透油气田勘探开发国家工程实验室开放课题(16GJ-KF-002)
作者简介:  郭思文:男,1980年生,工程师,从事油气增产技术研究 E-mail:gswen_cq@petrochina.com.cn
引用本文:    
郭思文, 邵媛, 古正富, 任国富, 张华光. 锌含量对铝基可降解合金降解速率的影响[J]. 材料导报, 2018, 32(6): 947-950.
GUO Siwen, SHAO Yuan, GU Zhengfu, REN Guofu, ZHANG Huaguang. Influence of Zn Content on the Degradation Rates of Degradable Aluminum Alloys. Materials Reports, 2018, 32(6): 947-950.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.017  或          https://www.mater-rep.com/CN/Y2018/V32/I6/947
1 Fan Jinzhe. Research of soluble materials based on staged fracturing technology[D].Shenyang: Shenyang Aerospace University,2015(in Chinese).
樊金喆. 基于分段压裂技术的可溶性材料研究[D].沈阳: 沈阳航空航天大学,2015.
2 Andersen J N, Rosine R S, Marshall M. Full-scale high-pressure stripper/packer testing with wellhead pressure to 15 000 psi[C]∥The 2000 SPE/ICoTA Coiled Tubing Round-table.Houston:TX,2000.
3 Onur M, Kuchuk F. Integrated nonlinear regression analysis of multiprobe wireline formation tester packer and probe pressures and flow rate measurements[C]∥SPE Annual Technical Conference and Exhibition.Houston:TX,1999.
4 He Hui. Tests and onsite application of degradable fracturing ball[J].Technical Study,2016(5):70(in Chinese).
何慧. 可降解压裂球试验与现场应用[J].石化技术,2016(5):70.
5 Liu Zhibin, Cheng Zhiyuan, Li Mei, et al. Research and application of disintegrating fracture ball used to separated fracturing in oil and gas wells[J].Oil Field Equipment,2016,45(10):54(in Chinese).
刘志斌,程智远,李梅,等.油气井分段压裂用可降解压裂球研制与应用[J].石油矿场机械,2016,45(10):54.
6 Aviles I, Marya M, Hernandez T R, et al. Application and benefits of degradable technology in open-hole fracturing[C]∥SPE Annual Technical Conference and Exihibition.New Orleans,2013.
7 Dong Mingjian, Guo Xianmin, Li Ziliang. Application and future development of degradable materials in completion tools[J].China Petroleum Machinery,2015,43(3):31(in Chinese).
董明键,郭先敏,李子良.可降解材料在完井工具中的应用及发展趋势[J].石油机械,2015,43(3):31.
8 Ziebarth J T, Woodall J M, Kramer R A, et al. Liquid phase-enabled reaction of Al-Ga and Al-Ga-In-Sn alloys with water[J].International Journal of Hydrogen Energy,2011,36(9):5271.
9 Wang W, Chen W, Zhao X M, et al. Effect of composition on the reactivity of Al-rich alloys with water[J].International Journal of Hydrogen Energy,2012,37(24):18672.
10 Marya M. Methods of manufacturing degradable alloys and products made from degradable alloys: US, 8770261[P].2014.
11 Wang F Q, Wang H H, Wang J, et al. Effects of low melting point metals (Ga, In, Sn) on hydrolysis properties of aluminum alloys[J].Transactions of Nonferrous Metals Society of China,2016,26(1):152.
12 Wen Jiuba, Gao Junwei, He Junguang, et al. Microstructure and corrosion electrochemical properties of Al-Ga-Mg-Sn-xZn alloys[J].Transactions of Materials and Heat Treatment,2014,35(9):131(in Chinese).
文九巴,高军伟,贺俊光,等.Al-Ga-Mg-Sn-xZn阳极合金组织和腐蚀电化学性能[J].材料热处理学报,2014,35(9):131.
13 Gao Junwei. Influence of Mn, Zn alloying on microstructure and electrochemical performance of Al-Ga-Mg-Sn anode alloys[D].Luo-yang:Henan University of Science and Technology,2014(in Chinese).
高军伟. Mn、Zn合金化对Al-Ga-Mg-Sn阳极合金组织及电化学性能的影响[D].洛阳:河南科技大学,2014.
14 He Junguang. Investigation on microstructure and electrochemical performance of Al-Zn-Sn series anode materials[D].Lanzhou: Lanzhou University of Technology,2011(in Chinese).
贺俊光. Al-Zn-Sn系阳极材料的组织与性能研究[D].兰州:兰州理工大学,2011.
15 Munoz A G, Saidman S B, Bessone J B. Corrosion of an Al-Zn-In alloy in chloride media[J].Corrosion Science 2002,44:2171.
16 Nestoridi M, Pletcher D, Wood R J K, et al. The study of alumi-nium anodes for high power density Al/air batteries with brine electrolytes[J].Journal of Power Sources,2008,178(1):445.
17 НΠ梁基谢夫主. 金属二元系相图手册[M].北京:化学工业出版社,2009:85.
18 Yang Jiazhuo. Study on as-cast Mg-Zn-Al-Ca heat-resistant magne-sium alloy[D].Taiyuan:Taiyuan University of Technology,2010(in Chinese).
杨家灼. 金属型铸造Mg-Zn-Al-Ca耐热镁合金的研究[D].太原:太原科技大学,2010.
19 L F蒙多尔福. 铝合金的组织与性能[M].北京:冶金工业出版社,1988.
20 Prosek T, Hagström J, Persson D, et al. Effect of the microstructure of Zn-Al and Zn-Al-Mg model alloys on corrosion stability[J].Corrosion Science,2016,110:71.
[1] 宋少龙, 王晓地, 张哲, 任学冲, 栾本利. 高熵合金高周和低周疲劳行为研究进展[J]. 材料导报, 2025, 39(3): 23100148-12.
[2] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[3] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[4] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[5] 郑琨鹏, 葛好升, 李正川, 刘贵应, 田光文, 王万值, 徐国华, 孙振平. 河砂与石英砂对蒸养超高性能混凝土(UHPC)性能的影响及机理[J]. 材料导报, 2024, 38(7): 22040216-6.
[6] 罗树琼, 葛亚丽, 潘崇根, 袁盛, 杨雷. 微波活化粉煤灰的微观结构及粉煤灰-水泥浆体的早期性能[J]. 材料导报, 2024, 38(7): 22090256-6.
[7] 吕炎, 白二雷, 王志航, 夏伟. 低温养护对环氧树脂基砂浆早期性能的影响及机理[J]. 材料导报, 2024, 38(5): 23080222-6.
[8] 陈立俊, 李滢, 陈文浩. 再生微粉与矿物掺合料对混凝土力学性能及微观结构的影响[J]. 材料导报, 2024, 38(5): 22070218-6.
[9] 常洪雷, 王晓龙, 郭政坤, 冯攀, 李少伟, 刘健. 低真空环境对硬化水泥浆体力学性能的影响[J]. 材料导报, 2024, 38(4): 22070290-6.
[10] 张超, 潘旺, 方宏远, 王娟, 王翠霞, 杜明瑞, 赵鹏, 王磊, 王复明. 聚氨酯泡沫注浆修复材料泡孔结构特征及抗压性能研究进展[J]. 材料导报, 2024, 38(3): 22070007-14.
[11] 刘开强, 于骏杰, 王海平, 张夏雨, 金诚, 张兴国. 地层渗流水对凝固过程固井水泥浆的侵扰机理[J]. 材料导报, 2024, 38(24): 23070062-6.
[12] 张建伟, 李智睿, 曹克磊, 陈磊, 赵江雨. 某水库粉质粘土渗透特性及微观机理研究[J]. 材料导报, 2024, 38(24): 23090129-8.
[13] 石磊, 房佳明, 张建伟, 张欢, 边汉亮, 徐向春. 考虑干密度影响的EICP矿化粉砂土渗透特性试验研究[J]. 材料导报, 2024, 38(23): 23090044-7.
[14] 黄鹏宇, 周永祥, 冷发光, 贺阳, 孔亚宁, 杨文, 高育欣. 同级配下高碳铬铁渣骨料对混凝土性能的影响研究[J]. 材料导报, 2024, 38(22): 23090192-7.
[15] 周辉, 莫继良, 张蒙祺, 王好平, 陈伟, 龚柯梦. 人工漂珠制备吸声材料的降噪性能研究[J]. 材料导报, 2024, 38(22): 23110073-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed