Please wait a minute...
材料导报  2018, Vol. 32 Issue (6): 943-946    https://doi.org/10.11896/j.issn.1005-023X.2018.06.016
  材料研究 |
镍含量对Co-8.8Al-9.8W合金中γ'相高温粗化的影响
徐仰涛1, 2, 娄德超1, 2, 陈宝林1, 2
1 兰州理工大学省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050;
2 兰州理工大学材料科学与工程学院,兰州 730050
Effects of Nickel Content on High Temperature Coarsening of γ' Phase in Co-8.8Al-9.8W Alloys
XU Yangtao1, 2, LOU Dechao1, 2, CHEN Baolin1, 2
1 State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology, Lanzhou 730050;
2 School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050
下载:  全 文 ( PDF ) ( 3142KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为了研究镍含量对Co-Al-W高温合金中γ'强化相高温粗化的影响,采用场发射SEM观察、图像分析等方法对不同镍含量(5%、15%、 25%、35%(原子分数))Co-8.8Al-9.8W基高温合金在1 000 ℃下经5 h、10 h、15 h和25 h时效处理后,合金中γ'相形貌的演变及粗化行为进行研究。结果表明,延长时效时间,γ'相快速长大,体积分数逐渐减小。当Ni含量为5%和15%时,时效时间为10 h,γ'相基本溶解消失;当Ni含量为25%和35%时,γ'相形貌随着时效时间的延长从最初的立方状转变为不规则形状,最后趋于圆球状,γ'相尺寸也随之增加。此时,γ'相的粗化行为符合LSW粗化理论。25Ni合金的粗化速率明显高于35Ni合金的粗化速率。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
徐仰涛
娄德超
陈宝林
关键词:  Ni元素  Co-8.8Al-9.8W高温合金  γ'相  粗化行为    
Abstract: The influence of nickel contents (5%, 15%, 25%, 35%,at%) on γ/γ' two-phase microstructure and γ' phase coarsening behavior of Co-8.8Al-9.8W based high temperature alloy at 1 000 ℃ for 5 h,10 h,15 h and 25 h was studied by field emission scanning electron microscope (FE-SEM) and image analysis method. The results show that the rapid growths of γ' phase and volume fraction of γ' phase decrease gradually with the increase of aging time. When Ni content is 5% and 15%, γ' phase completely dissolved at 10 h. When Ni content is 25% and 35%, the morphology of γ' phase shifted from initial cubic shape to irregular shape. Finally, it tend to be spherical, the size of γ' phase will also increase with the increase of aging time. The coarsening of γ' particles of the alloy follows LSW theory. The coarsening rate of 25Ni alloy is higher than that of 35Ni alloy.
Key words:  nickel element    Co-8.8Al-9.8W superalloy    γ' phase;    coarsening behavior
出版日期:  2018-03-25      发布日期:  2018-03-25
ZTFLH:  TG146.1  
  TG132.3  
基金资助: 国家自然科学基金(51561019)
作者简介:  徐仰涛:男,1978年生,博士,副教授,研究方向为新型钴基高温合金 E-mail:lanzhouxuyt@163.com
引用本文:    
徐仰涛, 娄德超, 陈宝林. 镍含量对Co-8.8Al-9.8W合金中γ'相高温粗化的影响[J]. 材料导报, 2018, 32(6): 943-946.
XU Yangtao, LOU Dechao, CHEN Baolin. Effects of Nickel Content on High Temperature Coarsening of γ' Phase in Co-8.8Al-9.8W Alloys. Materials Reports, 2018, 32(6): 943-946.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.06.016  或          https://www.mater-rep.com/CN/Y2018/V32/I6/943
1 Sato J, Omori T, Oikawa K, et al. Cobalt-base high-temperature alloys[J].Science,2006,312:90.
2 Chen M, Wang C Y. First-principle investigation of 3d transition metal elements in γ'-Co3(Al,W)[J].Journal of Applied Physics,2010,107(9):90.
3 Chen M, Wang C Y. First-principles investigation of the site prefe-rence and alloying effect of Mo, Ta and platinum group metals in γ'-Co3(Al,W)[J].Scripta Materialia,2009,60(8):659.
4 Meher S, Banerjee R. Partitioning and site occupancy of Ta and Mo in Co-base γ/γ' alloys studied by atom probe tomography[J].Intermetallics,2014,49(2):138.
5 Povstugar I, Choi P P, Neumeier S, et al. Elemental partitioning and mechanical properties of Ti- and Ta-containing Co-Al-W-base superalloys studied by atom probe tomography and nanoindentation[J].Acta Materialia,2014,78(4):78.
6 Yan H Y, Vorontsov V A, Dye D. Alloying effects in polycrystalline γ' strengthened Co-Al-W base alloys[J].Intermetallics,2014,48:44.
7 Xue F, Zhou H J, Shi Q Y, et al. Creep behavior in a γ' streng-thened Co-Al-W-Ta-Ti single-crystal alloy at 1 000 ℃[J].Scripta Materialia,2015,97:37.
8 Shinagawa K, Omori T, Sato J, et al. Phase equilibria and microstructure on γ' phase in Co-Ni-Al-W system[J].Materials Transactions,2008;49:1474.
9 Xue Fei, Mi Tao,Wang Meiling, et al. Effect of Ni microstructural evolution and γ' dissolution of novel Co-Al-W base alloys[J].Acta Metallurgica Sinica,2014,50(7):845(in Chinese).
薛飞,米涛,王美玲,等.Ni对Co-Al-W基合金时效组织演变和γ'相溶解行为的影响[J].金属学报,2014,50(7):845.
10 Wu D, Tian Lixi, Ma Chaoli. Effect of aging time at high temperature on microstructural evolution behavior of a nickel-based single crystal superalloy[J].Rare Metal Materials & Engineering,2015,44(6):1345.
11 Han Jiecai, Li Xiaohai, Chen Guiqing, et al. Coarsening of γ' preci-pitates in a nickel based superalloy prepared by EBPVD[J].Journal of Aeronautical Materials,2006,26(6):38(in Chinese).
韩杰才,李晓海,陈贵清,等.EBPVD制备镍基高温合金中γ'相的粗化[J].航空材料学报,2006,26(6):38.
12 Meher S, Nag S, Tiley J, et al. Coarsening kinetics of γ' precipitates in cobalt-base alloys[J].Acta Materialia,2013,61(11):4266.
13 Cheng X L, Li Y S, Zhang L, et al. Phase field simulation of morphology evolution and coarsening of γ' intermetallic phase in Ni-Al alloy[J].Materials Science and Technology,2013,29(3):364.
14 Coakley J, Basoalto H, Dye D. Coarsening of a multimodal nickel-base superalloy[J].Acta Materialia,2010,58(11):4019.
15 Vorontsov V A, Barnard J S, Rahman K M, et al. Coarsening behaviour and interfacial structure of γ', precipitates in Co-Al-W based superalloys[J].Acta Materialia,2016,120:14.
16 Xu Yangtao. Study on cobalt based novel Co-Al-W superalloys design, preparation and properties[D].Lanzhou:Lanzhou University of Techno-logy,2010(in Chinese).
徐仰涛. 新型钴基Co-Al-W合金设计、制备及性能研究[D].兰州:兰州理工大学,2010.
17 Xia Rongli. Effect of alloying elements on strengthening phase of Co-8.8Al-9.8W superalloy[D].Lanzhou:Lanzhou University of Techno-logy,2016(in Chinese).
夏荣里. 合金化元素对Co-8.8Al-9.8W合金强化相的影响[D].兰州:兰州理工大学,2016.
18 ASTM E562-11, Standard Test Method for Determining Volume Fraction by Systematic Manual Point Count[S].2011.
19 Sauza D J, Bocchini P J, Dunand D C, et al. Influence of ruthenium on microstructural evolution in a model Co-Al-W superalloy[J].Acta Materialia,2016,117:135.
20 Liu Jiantao, Liu Guoquan, Hu Benfu, et al. The coarsening behavior of γ' particles in FGH96 superalloys during the temperature treatment[J].Rare Metal Materials and Engineering,2006,35(3):418(in Chinese).
刘建涛,刘国权,胡本芙,等.FGH96合金中γ'相的高温粗化行为[J].稀有金属材料与工程,2006,35(3):418.
21 Yu Jian, Li Jiarong, Shi Zhenxue, et al.precipitation of secondary γ' phase of DD6 crystal superalloy[J].Rare Metal Materials and Engineering,2013,42(8):1654(in Chinese).
喻健,李嘉荣,史振学,等.DD6单晶高温合金二次γ'相的析出[J].稀有金属材料与工程,2013,42(8):1654.
22 Shi Zhenxue, Liu Shizhong, Xiong Jichun, et al. Microstructure evolution behavior of DD6 single crystal superalloy at different using temperatures[J].The Chinese Journal of Nonferrous Metals,2015(11):3077(in Chinese).
史振学,刘世忠,熊继春,等.不同使用温度下DD6单晶高温合金的组织演变行为[J].中国有色金属学报,2015(11):3077.
23 Yao Zhihao, Dong Jianxin, Chen Xu, et al. Gamma prime phase evolution during long-time exposure for GH738 superally[J].Tran-sactions of Materials and Heat Treatment,2013,34(1):31.
姚志浩,董建新,陈旭,等.GH738高温合金长期时效过程中γ'相演变规律[J].材料热处理学报,2013,34(1):31.
24 Chen Jingyang, Zhao Bin, Feng Qiang, et al. Effects of Ru and Cr on γ/γ' microstructural evolution of Ni-based single crystal superalloys during heat treatment[J].Acta Metallurgica Sinica,2010,46(8):897.
陈晶阳,赵宾,冯强,等. Ru和Cr对镍基单晶高温合金γ/γ'热处理组织演变的影响[J].金属学报,2010,46(8):897.
[1] 徐仰涛, 马腾飞, 王永红. 钽元素对Co-8.8Al-9.8W合金微观组织和力学性能的影响规律[J]. 材料导报, 2021, 35(22): 22104-22108.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed