Please wait a minute...
材料导报  2018, Vol. 32 Issue (13): 2129-2142    https://doi.org/10.11896/j.issn.1005-023X.2018.13.001
  材料与可持续发展(一)—— 面向洁净能源的先进材料 |
金属-有机框架(MOFs)衍生材料及其在储能器件和电催化领域的应用
叶绍凤1, 刘文贤1, 徐喜连1, 沙东勇1, 施文慧2, 曹澥宏1,3
1 浙江工业大学材料科学与工程学院,杭州 310014;
2 浙江工业大学海洋学院,膜分离与水科学技术中心,杭州 310014;
3 浙江工业大学绿色化学合成技术国家重点实验室培育基地,杭州 310032
Metal-Organic Framework-derived Materials and Their Applications in EnergyStorage Devices and Electrocatalysis
YE Shaofeng1, LIU Wenxian1, XU Xilian1, SHA Dongyong1, SHI Wenhui2, CAO Xiehong1,3
1 College of Materials Science and Engineering, Zhejiang University of Technology, Hangzhou 310014;
2 Center forMembrane Separation and Water Science & Technology, Ocean College, Zhejiang University of Technology,Hangzhou 310014;
3 State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology,Zhejiang University of Technology, Hangzhou 310032
下载:  全 文 ( PDF ) ( 4558KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 金属-有机框架(MOFs)是一类由金属离子/团簇和有机配体通过配位形成的具有多孔结构的无机-有机杂化材料。MOFs具有比表面积高、孔径均一、结构可调等优点,受到了人们的广泛关注。然而,MOFs的导电性和稳定性较差,制约了其应用的进一步拓展。以MOFs作为前驱体,通过水热反应或煅烧得到组成、形貌、结构可调的MOFs衍生材料,既能够保持MOFs材料结构多样性和多孔性的特点,又能有效提高其导电性和稳定性,近年来已成为该领域的研究热点。   然而,MOFs衍生材料单一的组成和结构,使其能够提供的性能(如电容性能、催化性能)有限,极大地限制了其相关应用的发展。因此,近几年除了研究制备各种不同MOFs衍生材料外,研究者们主要从MOFs衍生材料的组成和结构方面出发,制备出多样化且在各方面应用中(如储能器件、催化)表现出优异性能的材料。   MOFs衍生材料作为性能优异的应用型材料,其研究较为成熟的组成和结构分别主要包括多孔碳、金属氧化物、金属硫化物、金属磷化物、金属氢氧化物以及纤维状结构、中空结构、核壳结构等。MOFs衍生材料不仅具有高的比表面积、均一的孔径分布,通常还结合了衍生多孔碳的高导电性及其他衍生材料(金属化合物或掺杂的金属原子及杂原子,如N、P、S等)的优异性能(如电容性能、催化性能),从而发挥出更加优异的性能。其中,MOFs衍生金属化合物材料具备多孔结构,能够提供优异的容量性能及催化性能等,且其性能通常优于通过其他方法制备得到的同种材料。从结构方面出发,近几年,研究者们通过调控前驱体结构亦或是反应条件,制备得到多种不同结构的MOFs衍生材料。一方面,部分制备得到的结构(如核壳结构、中空结构)可以缓解MOFs衍生材料在使用过程中所受到的冲击,从而表现出优异的循环性能。另一方面,通过调控MOFs衍生材料的结构,使其活性位点得到充分的暴露,从而使其性能得到最大化的发挥。   本文综述了MOFs衍生材料的研究进展,包括组成特点、结构调控,及其在储能器件、催化领域的应用,最后阐述了MOFs衍生材料研究领域当前面临的挑战以及未来的发展前景。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
叶绍凤
刘文贤
徐喜连
沙东勇
施文慧
曹澥宏
关键词:  金属-有机框架衍生材料  多孔材料  储能器件  催化    
Abstract: Metal-organic frameworks (MOFs), a kind of porous materials constructed from metal ion/cluster and organic li-gands, have been a major focus of materials science over the past decades. MOFs possess high specific surface area and uniform cavities, as well as structural tunability, which are promising for a variety of applications. However, the poor conductivity and low stability of MOFs restrict their further development of applications. In recent years, MOF-derived materials, obtained by hydrothermal and/or calcining process, which possess relatively higher conductivity and better stability while maintaining the structural advantages of MOFs, have become a research hotspot.   However, the single composition and structure of MOF-derived materials, which can provide limited performance (such as capacitive properties, catalytic properties), greatly limit the development of its related applications. Therefore, in addition to research and preparation of a variety of different MOF-derived materials in recent years, researchers mainly foucs on the composition and structure of MOF-derived materials to prepare a variety of materials with excellent performance in various applications (such as energy storage and conversion, catalysis).   As applied materials with excellent performance, composition and structure of MOF-derived materials have been studied maturely, mainly include porous carbon, metal oxides, metal phosphides, metal hydroxides, and fibrous structures, hollow structures, core-shell structures, etc. MOF-derived materials with large specific surface area, uniformly distributed cavities, always combine the porous carbon with high conductivity and other derived materials (metal compounds or doped metal atoms and heteroatoms such as N, P, S, etc.) with excellent performance (such as capacitance, catalytic properties), to play a rather excellent performance. Among them, MOF-derived metal compounds have porous structure, which can provide excellent capacity and catalytic properties, and the properties are usually superior to the same materials prepared by other methods. In terms of structure, in recent years, the resear-chers have prepared a variety of MOF-derived materials with different structures by controlling the precursor structure or the reaction conditions. On the one hand, partially prepared structures (such as the core shell structure and the hollow structure) of MOF-derived materials can alleviate the impact in the process of use, thus it can show excellent cycling performance. On the other hand, by regulating the structure of MOF-derived materials, the active sites are fully exposed, so that their performance can be maximized.   In this review,we summarizes the recent progress of MOF-derived materials, including its composition, structural regulation, as well as their applications in energy storage, catalysis and other fields. Finally, the future direction and challenge of MOF-derived materials are discussed.
Key words:  metal-organic frameworks(MOF)-derived materials    porous materials    energy storage devices    catalysis
               出版日期:  2018-07-10      发布日期:  2018-08-01
ZTFLH:  O611  
基金资助: 国家自然科学基金(51602284;51702286);浙江省自然科学基金(LQI7B030002);浙江省千人计划创新长期人才项目;浙江省钱江学者特聘教授项目
通讯作者:  曹澥宏:通信作者,男,1986年生,博士,教授,主要从事低维纳米材料研究 E-mail:gcscaoxh@zjut.edu.cn   
作者简介:  叶绍凤:女,1993年生,博士研究生,主要从事多孔碳纳米储能材料研究 E-mail:2111625072@zjut.edu.cn 刘文贤:男,1991年生,博士,讲师,主要从事MOFs研究 E-mail:liuwx@zjut.edu.cn 施文慧:女,1987年生,讲师,主要从事电化学电极材料研究 E-mail:shiwh@zjut.edu.cn
引用本文:    
叶绍凤, 刘文贤, 徐喜连, 沙东勇, 施文慧, 曹澥宏. 金属-有机框架(MOFs)衍生材料及其在储能器件和电催化领域的应用[J]. 材料导报, 2018, 32(13): 2129-2142.
YE Shaofeng, LIU Wenxian, XU Xilian, SHA Dongyong, SHI Wenhui, CAO Xiehong. Metal-Organic Framework-derived Materials and Their Applications in EnergyStorage Devices and Electrocatalysis. Materials Reports, 2018, 32(13): 2129-2142.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.13.001  或          http://www.mater-rep.com/CN/Y2018/V32/I13/2129
1 Zheng H Q, Zhang Y N, Liu L F, et al. One-pot synthesis of metal-organic frameworks with encapsulated target molecules and their applications for controlled drug delivery[J].Journal of the American Chemical Society,2016,138(3):962.
2 Wang L, Han Y Z, Feng X, et al. Metal-organic frameworks for energy storage: Batteries and supercapacitors[J].Coordination Chemistry Reviews,2016,307:361.
3 Liu J W, Chen L F, Cui H, et al. Applications of metal-organic frameworks in heterogeneous supramolecular catalysis[J].Chemical Society Reviews,2014,43(16):6011.
4 Xia W, Mahmood A, Zou R Q, et al. Metal-organic frameworks and their derived nanostructures for electrochemical energy storage and conversion[J].Energy & Environmental Science,2015,8(7):1837.
5 Cao X, Tan C L, Sindoro M, et al. Hybrid micro-/nano-structures derived from metal-organic frameworks: Preparation and applications in energy storage and conversion[J].Chemical Society Reviews,2017,46(10):2660.
6 Nandasiri M I, Jambovane S R, McGrail B P, et al. Adsorption, separation, and catalytic properties of densified metal-organic frameworks[J].Coordination Chemistry Reviews,2016,311:38.
7 Morozan A, Jaouen F. Metal organic frameworks for electrochemical applications[J].Energy & Environmental Science,2012,5(11):9269.
8 He J R, Lv W Q, Chen Y F, et al. Three-dimensional hierarchical C-Co-N/Se derived from metal-organic framework as superior cat-hode for Li-Se batteries[J].Journal of Power Sources,2017,363:103.
9 Liu X Y, Zou F, Liu K W, et al. A binary metal organic framework derived hierarchical hollow Ni3S2/Co9S8/N-doped carbon composite with superior sodium storage performance[J].Journal of Materials Chemistry A,2017,5(23):11781.
10 Pan Y, Zhao Y X, Mu S J, et al. Cation exchanged MOF-derived nitrogen-doped porous carbons for CO2 capture and supercapacitor electrode materials[J].Journal of Materials Chemistry A,2017,5(20):9544.
11 Kaneti Y V, Zhang J, He Y B, et al. Fabrication of an MOF-derived heteroatom-doped Co/CoO/carbon hybrid with superior sodium storage performance for sodium-ion batteries[J].Journal of Materials Che-mistry A,2017,5(29):15356.
12 Liu Y Z, Li G R, Guo Y, et al. Flexible and binder-free hierarchical porous carbon film for supercapacitor electrodes derived from MOFs/CNT[J].ACS Applied Materials & Interfaces,2017,9(16):14043.
13 Wang F, Zhuo H Y, Han X G, et al. Foam-like CoO@N,S-codoped carbon composites derived from a well-designed N, S-rich Co-MOF for lithium-ion batteries[J].Journal of Materials Chemistry A,2017,5(44):22964.
14 Zhao R, Xia W, Lin C, et al. A pore-expansion strategy to synthesize hierarchically porous carbon derived from metal-organic framework for enhanced oxygen reduction[J].Carbon,2017,114:284.
15 Wang Y, Chen X T, Lin Q P, et al. Nanoporous carbon derived from a functionalized metal-organic framework as a highly efficient oxygen reduction electrocatalyst[J].Nanoscale,2017,9(2):862.
16 Shen K, Chen L, Long J L, et al. MOFs-templated Co@Pd core-shell NPs embedded in N-doped carbon matrix with superior hydrogenation activities[J].ACS Catalysis,2015,5(9):5264.
17 Ji D, Zhou H, Zhang J, et al. Facile synthesis of a metal-organic framework-derived Mn2O3 nanowire coated three-dimensional graphene network for high-performance free-standing supercapacitor electrodes[J].Journal of Materials Chemistry A,2016,4(21):8283.
18 Xu X L, Shi W H, Li P, et al. Facile fabrication of three-dimensional graphene and metal-organic framework composites and their deri-vatives for flexible all-solid-state supercapacitors[J].Chemistry of Materials,2017,29(14):6058.
19 Wu X, Meng G, Liu W X, et al. Metal-organic framework-derived, Zn-doped porous carbon polyhedra with enhanced activity as bifunctional catalysts for rechargeable zinc-air batteries[J].Nano Research,2017,11(1):163.
20 Yan L T, Cao L, Dai P C, et al. Metal-organic frameworks derived nanotube of nickel-cobalt bimetal phosphides as highly efficient electrocatalysts for overall water splitting[J].Advanced Functional Materials,2017,27(40):1703455.
21 Xia G L, Su J W, Li M S, et al. A MOF-derived self-template stra-tegy toward cobalt phosphide electrodes with ultralong cycle life and high capacity[J].Journal of Materials Chemistry A,2017,5(21):10321.
22 Liang X, Zheng B X, Chen L G, et al. MOF-derived formation of Ni2P-CoP bimetallic phosphides with strong interfacial effect toward electrocatalytic water splitting[J].ACS Applied Materials & Interfaces,2017,9(27):23222.
23 Wu R B, Wang D P, Kumar V, et al. MOFs-derived copper sulfides embedded within porous carbon octahedra for electrochemical capacitor applications[J].Chemical Communications,2015,51(15):3109.
24 Liu J, Wu C, Xiao D D, et al. MOF-derived hollow Co9S8 nanoparticles embedded in graphitic carbon nanocages with superior Li-ion storage[J].Small,2016,12(17):2354.
25 Yilmaz G, Yam K M, Zhang C, et al. In situ transformation of MOFs into layered double hydroxide embedded metal sulfides for improved electrocatalytic and supercapacitive performance[J].Advanced Materials,2017,29(26):1606814.
26 Zhang J T, Hu H, Li Z, et al. Double-shelled nanocages with cobalt hydroxide inner shell and layered double hydroxides outer shell as high-efficiency polysulfide mediator for lithium-sulfur batteries[J].Angewandte Chemie,2016,55(12):3982.
27 Chaikittisilp W, Ariga K, Yamauchi Y. A new family of carbon materials: Synthesis of MOF-derived nanoporous carbons and their promising applications[J].Journal of Materials Chemistry A,2013,1(1):14.
28 Salunkhe R R, Kaneti Y V, Kim J, et al. Nanoarchitectures for me-tal-organic framework-derived nanoporous carbons toward supercapacitor applications[J].Accounts of Chemical Research,2016,49(12):2796.
29 Salunkhe R R, Kaneti Y V,Yamauchi Y. Metal-organic framework-derived nanoporous metal oxides toward supercapacitor applications: Progress and prospects[J].ACS Nano,2017,11(6):5293.
30 Kaneti Y V, Tang J, Salunkhe R R, et al. Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks[J].Advanced Materials,2017,29(12):1604898.
31 Zhao S N, Song X Z, Song S Y, et al. Highly efficient heterogeneous catalytic materials derived from metal-organic framework supports/precursors[J].Coordination Chemistry Reviews,2017,337:80.
32 Salunkhe R R, Kamachi Y, Torad N L, et al. Fabrication of symmetric supercapacitors based on MOF-derived nanoporous carbons[J].Journal of Materials Chemistry A,2014,2(46):19848.
33 Wang R T, Jin D D, Zhang Y B, et al. Engineering metal organic framework derived 3D nanostructures for high performance hybrid supercapacitors[J].Journal of Materials Chemistry A,2017,5(1):292.
34 Fan H S, Yu H, Wu X L, et al. Controllable preparation of square nickel chalcogenide (NiS and NiSe2) nanoplates for superior Li/Na ion storage properties[J].ACS Applied Materials & Interfaces,2016,8(38):25261.
35 Qi L Y, Xin Y L, Zuo Z C, et al. Grape-like Fe3O4 agglomerates grown on graphene nanosheets for ultrafast and stable lithium sto-rage[J].ACS Applied Materials & Interfaces,2016,8(27):17245.
36 Dang S, Zhu Q L, Xu Q. Nanomaterials derived from metal-organic frameworks[J].Nature Reviews Materials,2017,3(1):17075.
37 Fu Y, Huang Y, Xiang Z H, et al. Phosphorous-nitrogen-codoped carbon materials derived from metal-organic frameworks as efficient electrocatalysts for oxygen reduction reactions[J].European Journal of Inorganic Chemistry,2016,2016(13-14):2100.
38 Zhang L J, Su Z X, Jiang F L, et al. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions[J].Nanoscale,2014,6(12):6590.
39 Bao W Z, Mondal A K, Xu J, et al. 3D hybrid-porous carbon derived from carbonization of metal organic frameworks for high perfor-mance supercapacitors[J].Journal of Power Sources,2016,325:286.
40 Yan X L, Li X J, Yan Z F, et al. Porous carbons prepared by direct carbonization of MOFs for supercapacitors[J].Applied Surface Science,2014,308:306.
41 Li Z X, Zou K Y, Zhang X, et al. Hierarchically flower-like N-doped porous carbon materials derived from an explosive 3-fold interpenetrating diamondoid copper metal-organic framework for a supercapacitor[J].Inorganic Chemistry,2016,55(13):6552.
42 Liu B, Shioyama H, Akita T, et al. Metal-organic framework as a template for porous carbon synthesis[J].Journal of the American Chemical Society,2008,130(16):5390.
43 Li Z Q, Li C X, Ge X L, et al. Reduced graphene oxide wrapped MOFs-derived cobalt-doped porous carbon polyhedrons as sulfur immobilizers as cathodes for high performance lithium sulfur batteries[J].Nano Energy,2016,23:15.
44 Liang X H, Quan B, Ji G B, et al. Novel nanoporous carbon derived from metal-organic frameworks with tunable electromagnetic wave absorption capabilities[J].Inorganic Chemistry Frontiers,2016,3(12):1516.
45 Qian Y H, Hu Z G, Ge X M, et al. A metal-free ORR/OER bifunctional electrocatalyst derived from metal-organic frameworks for rechargeable Zn-air batteries[J].Carbon,2017,111:641.
46 Tan H L, Ma C J, Gao L, et al. Metal-organic framework-derived copper nanoparticle@carbon nanocomposites as peroxidase mimics for colorimetric sensing of ascorbic acid[J].Chemistry,2014,20(49):16377.
47 Xia W, Zhu J H, Guo W H, et al. Well-defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction[J].Journal of Materials Chemistry A,2014,2(30):11606.
48 Yin P Q, Yao T, Wu Y, et al. Single cobalt atoms with precise N-coordination as superior oxygen reduction reaction catalysts[J].Angewandte Chemie,2016,55(36):10800.
49 Liu T, Zhang Y, Hou J K, et al. High performance mesoporous C@Se composite cathodes derived from Ni-based MOFs for Li-Se batte-ries[J].RSC Advances,2015,102(5):84038.
50 Liu T, Jia M, Zhang Y, et al. Confined selenium within metal-organic frameworks derived porous carbon microcubes as cathode for rechargeable lithium-selenium batteries[J].Journal of Power Sources,2017,341:53.
51 Wang X, Li Y W. Nanoporous carbons derived from MOFs as metal-free catalysts for selective aerobic oxidations[J].Journal of Materials Chemistry A,2016,4(14):5247.
52 Wu H B, Wei S Y, Zhang L, et al. Embedding sulfur in MOF-derived microporous carbon polyhedrons for lithium-sulfur batteries[J].Chemistry,2013,19(33):10804.
53 Zhang W, Wu Z Y, Jiang H L, et al. Nanowire-directed templating synthesis of metal-organic framework nanofibers and their derived porous doped carbon nanofibers for enhanced electrocatalysis[J].Journal of the American Chemical Society,2014,136(41):14385.
54 Li J S, Li S L, Tang Y J, et al. Heteroatoms ternary-doped porous carbons derived from MOFs as metal-free electrocatalysts for oxygen reduction reaction[J].Scientific Reports,2014,4:5130.
55 Chen Y Q, Wu J F, Yang W S, et al. Zn/Fe-MOFs-derived hierarchical ball-in-ball ZnO/ZnFe2O4@carbon nanospheres with exceptional lithium storage performance[J].Journal of Alloys & Compounds,2016,688:211.
56 Huang G, Zhang F F, Zhang L L, et al. Hierarchical NiFe2O4/Fe2O3 nanotubes derived from metal organic frameworks for supe-rior lithium ion battery anodes[J].Journal of Materials Chemistry A,2014,2(21):8048.
57 Cao K Z, Jiao L F, Xu H, et al. Reconstruction of mini-hollow polyhedron Mn2O3 derived from MOFs as a high-performance lithium anode material[J].Advanced Science,2016,3(3):1500185.
58 Li X Z, Fang Y Y, Lin X Q, et al. MOF derived Co3O4 nanoparticles embedded in N-doped mesoporous carbon layer/MWCNT hybrids: Extraordinary bi-functional electrocatalysts for OER and ORR[J].Journal of Materials Chemistry A,2015,3(33):17392.
59 Khaletskaya K, Pougin A, Medishetty R, et al. Fabrication of gold/titania photocatalyst for CO2 reduction based on pyrolytic conversion of the metal-organic framework NH2-MIL-125(Ti) loaded with gold nanoparticles[J].Chemistry of Materials,2015,27(21):7248.
60 Zhang L, Wu H B, Lou X W. Metal-organic-frameworks-derived general formation of hollow structures with high complexity[J].Journal of the American Chemical Society,2013,135(29):10664.
61 Chen S R, Xue M, Li Y Q, et al. Rational design and synthesis of NixCo3-xO4 nanoparticles derived from multivariate MOF-74 for supercapacitors[J].Journal of Materials Chemistry A,2015,3(40):20145.
62 Zou K Y, Liu Y C, Jiang Y F, et al. Benzoate acid-dependent lattice dimension of Co-MOFs and MOF-derived CoS2@CNTs with tunable pore diameters for supercapacitors[J].Inorganic Chemistry,2017,56(11):6184.
63 Zhu C B, Wen Y R, van Aken P A, et al. High lithium storage performance of FeS nanodots in porous graphitic carbon nanowires[J].Advanced Functional Materials,2015,25(15):2335.
64 Liu Y, Zhou X L, Ding T, et al. 3D architecture constructed via the confined growth of MoS2 nanosheets in nanoporous carbon derived from metal-organic frameworks for efficient hydrogen production[J].Nanoscale,2015,7(43):18004.
65 Zhang X, Liu S W, Zang Y P, et al. Co/Co9S8 @S,N-doped porous graphene sheets derived from S, N dual organic ligands assembled Co-MOFs as superior electrocatalysts for full water splitting in alkaline media[J].Nano Energy,2016,30:93.
66 Xu X B, Nosheen F, Wang X. Ni-decorated molybdenum carbide hollow structure derived from carbon-coated metal-organic framework for electrocatalytic hydrogen evolution reaction[J].Chemistry of Materials,2016,28(17):6313.
67 Yu D B, Wu B, Ran J, et al. An ordered ZIF-8-derived layered double hydroxide hollow nanoparticles-nanoflake array for high efficiency energy storage[J].Journal of Materials Chemistry A,2016,4(43):16953.
68 Guan B Y, Yu L,Lou X W. A dual-metal-organic-framework derived electrocatalyst for oxygen reduction[J].Energy & Environmental Science,2016,9(10):3092.
69 Gao M, Zeng L W, Nie J, et al. Polymer-metal-organic framework core-shell framework nanofibers via electrospinning and their gas adsorption activities[J].RSC Advances,2016,6(9):7078.
70 Koo W T, Choi S J, Kim S J, et al. Heterogeneous sensitization of metal-organic framework driven metal@metal oxide complex catalysts on an oxide nanofiber scaffold toward superior gas sensors[J].Journal of the American Chemical Society,2016,138(40):13431.
71 Lai Q X, Zhao Y X, Liang Y Y, et al. In situ confinement pyrolysis transformation of ZIF-8 to nitrogen-enriched meso-microporous carbon frameworks for oxygen reduction[J].Advanced Functional Materials,2016,26(45):8334.
72 Liu C, Wang J, Li J S, et al. Electrospun ZIF-based hierarchical carbon fiber as an efficient electrocatalyst for the oxygen reduction reaction[J].Journal of Materials Chemistry A,2017,5(3):1211.
73 Wang C H, Liu C, Li J S, et al. Electrospun metal-organic framework derived hierarchical carbon nanofibers with high performance for supercapacitors[J].Chemical Communications,2017,53(10):1751.
74 Li Z, Tang B H J. Mn3O4/nitrogen-doped porous carbon fiber hybrids involving multiple covalent interactions and open voids as flexible anodes for lithium-ion batteries[J].Green Chemistry,2017,19(24):5862.
75 Han Y, Zhao M L, Dong L, et al. MOF-derived porous hollow Co3O4 parallelepipeds for building high-performance Li-ion batteries[J].Journal of Materials Chemistry A,2015,3(45):22542.
76 Sun C C, Yang J, Rui X H, et al. MOF-directed templating synthesis of a porous multicomponent dodecahedron with hollow interiors for enhanced lithium-ion battery anodes[J].Journal of Materials Chemistry A,2015,3(16):8483.
77 Yang J, Zhang F J, Lu H Y, et al. Hollow Zn/Co ZIF particles derived from core-shell ZIF-67@ZIF-8 as selective catalyst for the semi-hydrogenation of acetylene[J].Angewandte Chemie International Edition,2015,54(37):10889.
78 Yu H, Fan H S, Yadian B L, et al. General approach for MOF-derived porous spinel AFe2O4 hollow structures and their superior li-thium storage properties[J].ACS Applied Materials & Interfaces,2015,7(48):26751.
79 Zou F, Hu X L, Li Z, et al. MOF-derived porous ZnO/ZnFe2O4/C octahedra with hollow interiors for high-rate lithium-ion batteries[J].Advanced Materials,2014,26(38):6622.
80 Guan B Y, Yu L,Lou X W. Formation of single-holed cobalt/N-doped carbon hollow particles with enhanced electrocatalytic activity toward oxygen reduction reaction in alkaline media[J].Advanced Science,2017,4(10):1700247.
81 Bai X, Liu J Y, Liu Q, et al. In-situ fabrication of MOF-derived Co-Co layered double hydroxide hollow nanocages/graphene composite: A novel electrode material with superior electrochemical performance[J].Chemistry—A European Journal,2017,23(59):14839.
82 Tian T, Huang L, Ai L H, et al. Surface anion-rich NiS2 hollow microspheres derived from metal-organic frameworks as a robust electrocatalyst for the hydrogen evolution reaction[J].Journal of Mate-rials Chemistry A,2017,5(39):20985.
83 Ge X L, Li Z Q, Wang C X, et al. Metal-organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery[J].ACS Applied Materials & Interfaces,2015,7(48):26633.
84 Wang Z J, Lu Y Z, Yan Y, et al. Core-shell carbon materials derived from metal-organic frameworks as an efficient oxygen bifunctional electrocatalyst[J].Nano Energy,2016,30:368.
85 Yang J, Ye H L, Zhao F Q, et al. A novel CuxO nanoparticles@ZIF-8 composite derived from core-shell metal-organic frameworks for highly selective electrochemical sensing of hydrogen peroxide[J].ACS Applied Materials & Interfaces,2016,8(31):20407.
86 Zhang G H, Hou S C, Zhang H, et al. High-performance and ultra-stable lithium-ion batteries based on MOF-derived ZnO@ZnO quantum dots/C core-shell nanorod arrays on a carbon cloth anode[J].Advanced Materials,2015,27(14):2400.
87 Huang G, Yin D M, Wang L M. A general strategy for coating me-tal-organic frameworks on diverse components and architectures[J].Journal of Materials Chemistry A,2016,4(39):15106.
88 Ge X L, Li Z Q, Yin L W. Metal-organic frameworks derived porous core/shell CoP@C polyhedrons anchored on 3D reduced graphene oxide networks as anode for sodium-ion battery[J].Nano Energy,2017,32:117.
89 Sikdar N, Konkena B, Masa J, et al. Co3O4@Co/NCNT nanostructure derived from a dicyanamide-based metal-organic framework as an efficient bi-functional electrocatalyst for oxygen reduction and evolution reactions[J].Chemistry,2017,23(71):18049.
90 Zhao Y C, Li X, Liu J D, et al. MOF-derived ZnO/Ni3ZnC0.7/C hybrids yolk-shell microspheres with excellent electrochemical performances for lithium ion batteries [J]. ACS Applied Materials & Interfaces,2016,8(10):6472.
91 Gu F B, Chen H H, Han D M, et al. Metal-organic framework derived Au@ZnO yolk-shell nanostructures and their highly sensitive detection of acetone[J].RSC Advances,2016,6(35):29727.
92 Qu F D, Jiang H F, Yang M H. MOF-derived Co3O4/NiCo2O4 double-shelled nanocages with excellent gas sensing properties[J].Materials Letters,2017,190:75.
93 Wu M K, Chen C, Zhou J J, et al. MOF-derived hollow double-shelled NiO nanospheres for high-performance supercapacitors[J].Journal of Alloys & Compounds,2018,734:1.
94 Su Y, Ao D, Liu H, et al. MOF-derived yolk-shell Cds microcubes with enhanced visible-light photocatalytic activity and stability for hydrogen evolution[J].Journal of Materials Chemistry A,2017,5(18):8680.
95 Li G C, Liu P F, Liu R, et al. MOF-derived hierarchical double-shelled NiO/ZnO hollow spheres for high-performance supercapacitors[J].Dalton Trans,2016,45(34):13311.
96 Wu H B, Lou X W. Metal-organic frameworks and their derived materials for electrochemical energy storage and conversion: Promises and challenges[J].Science Advances,2017,3(12):eaap9252.
97 Huang M, Mi K, Zhang J H, et al. MOF-derived bi-metal embedded N-doped carbon polyhedral nanocages with enhanced lithium storage[J].Journal of Materials Chemistry A,2017,5(1):266.
98 Ji D, Zhou H, Tong Y L, et al. Facile fabrication of MOF-derived octahedral CuO wrapped 3D graphene network as binder-free anode for high performance lithium-ion batteries[J].Chemical Engineering Journal,2017,313:1623.
99 Mahmood A, Zou R Q, Wang Q F, et al. Nanostructured electrode materials derived from metal-organic framework xerogels for high-energy-density asymmetric supercapacitor[J].ACS Applied Materials & Interfaces,2016,8(3):2148.
100 Xia W, Qu C, Liang Z B, et al. High-performance energy storage and conversion materials derived from a single metal-organic framework/graphene aerogel composite[J].Nano Letters,2017,17(5):2788.
101 Zheng F C, Xia G L, Yang Y, et al. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-perfor-mance anodes for lithium-ion batteries[J].Nanoscale,2015,7(21):9637.
102 Li W H, Hu S H, Luo X Y, et al. Confined amorphous red phosphorus in MOF-derived N-doped microporous carbon as a superior anode for sodium-ion battery[J].Advanced Materials,2017,29(16):1605820.
103 Tong M Y, Liu S W, Zhang X, et al. Two-dimensional CoNi nanoparticles@S,N-doped carbon composites derived from S, N-containing Co/Ni MOFs for high performance supercapacitors[J].Journal of Materials Chemistry A,2017,5(20):9873.
104 Fu S F, Zhu C Z, Song J H, et al. Metal-organic framework-derived non-precious metal nanocatalysts for oxygen reduction reaction[J].Advanced Energy Materials,2017,7(19):1700363.
105 Ma B, Guan P Y, Li Q Y, et al. MOF-derived flower-like MoS2@TiO2 nanohybrids with enhanced activity for hydrogen evolution[J].ACS Applied Materials & Interfaces,2016,8(40):26794.
106 Mahmood A, Guo W H, Tabassum H, et al. Metal-organic framework-based nanomaterials for electrocatalysis[J].Advanced Energy Materials,2016,6(17):1600423.
107 Hao Y C, Xu Y Q, Liu J F, et al. Nickel-cobalt oxides supported on Co/N decorated graphene as an excellent bifunctional oxygen catalyst[J].Journal of Materials Chemistry A,2017,5(11):5594.
108 Yang Y, Lun Z Y, Xia G L, et al. Non-precious alloy encapsulated in nitrogen-doped graphene layers derived from MOFs as an active and durable hydrogen evolution reaction catalyst[J].Energy & Environmental Science,2015,8(12):3563.
[1] 郭继鹏, 王敬锋, 林琳, 何丹农. 不同形貌的g-C3N4的制备研究进展[J]. 材料导报, 2019, 33(z1): 1-7.
[2] 潘云, 吴承仁, 陈绍维, 伍小波. 氧还原催化材料与催化机理及活性位点的研究进展[J]. 材料导报, 2019, 33(z1): 41-44.
[3] 钱鑫, 邓丽芳, 王鲁丰, 单锐, 袁浩然. 二氧化碳电化学还原技术研究进展[J]. 材料导报, 2019, 33(z1): 102-107.
[4] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[5] 李鑫, 王欢, 刘立业, 张吉波, 邱俊. 不同方法制备的乙醇胺还原胺化催化剂及其表征[J]. 材料导报, 2019, 33(z1): 466-469.
[6] 肖健, 刘锦平, 刘先斌, 邱贵宝. 泡沫钛表面改性研究进展[J]. 材料导报, 2019, 33(9): 1558-1566.
[7] 侯珊, 刘向春. 新型光催化剂钨酸锌的制备及性能改性研究进展[J]. 材料导报, 2019, 33(9): 1541-1549.
[8] 姜德彬, 袁云松, 吴俊书, 杜玉成, 王金淑, 张育新. 硅藻土基复合材料在能源与环境领域的应用进展[J]. 材料导报, 2019, 33(9): 1483-1489.
[9] 熊德华, 邓砚文, 杜子娟, 张晴晴, 李宏. CuMnO2/TiO2复合光催化剂增效催化降解亚甲基蓝[J]. 材料导报, 2019, 33(8): 1262-1267.
[10] 吴靓, 汤智, 杨格, 刘艳, 许艳飞, 钱锦文, 肖逸锋, 贺跃辉. 用于过滤膜的梯度孔径Ni-Cr-Fe多孔材料的制备及性能[J]. 材料导报, 2019, 33(8): 1376-1382.
[11] 赵媛媛, 王德军, 赵朝成. 电催化氧化处理难降解废水用电极材料的研究进展[J]. 材料导报, 2019, 33(7): 1125-1132.
[12] 张嘉羲, 袁欢, 刘禹彤, 陈雨, 徐明. Fe掺杂的Ag-ZnO纳米复合材料的合成及光催化性能[J]. 材料导报, 2019, 33(6): 941-946.
[13] 占昌朝, 曹小华, 金文雄, 叶志刚, 谢宝华, 徐建兴, 周荣辉. 以水杨酸为模板分子的Nd掺杂分子印迹TiO2的制备及光催化性能[J]. 材料导报, 2019, 33(6): 947-953.
[14] 吕斌, 程坤, 高党鸽, 马建中. 中空结构纳米TiO2微球的可控制备[J]. 材料导报, 2019, 33(5): 770-776.
[15] 戈明亮, 席壮壮, 梁国栋. 二维层状材料麦羟硅钠石的研究进展[J]. 材料导报, 2019, 33(5): 754-760.
[1] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[2] Huimin PAN,Jun FU,Qingxin ZHAO. Sulfate Attack Resistance of Concrete Subjected to Disturbance in Hardening Stage[J]. Materials Reports, 2018, 32(2): 282 -287 .
[3] Siyuan ZHOU,Jianfeng JIN,Lu WANG,Jingyi CAO,Peijun YANG. Multiscale Simulation of Geometric Effect on Onset Plasticity of Nano-scale Asperities[J]. Materials Reports, 2018, 32(2): 316 -321 .
[4] Xu LI,Ziru WANG,Li YANG,Zhendong ZHANG,Youting ZHANG,Yifan DU. Synthesis and Performance of Magnetic Oil Absorption Material with Rice Chaff Support[J]. Materials Reports, 2018, 32(2): 219 -222 .
[5] Ninghui LIANG,Peng YANG,Xinrong LIU,Yang ZHONG,Zheqi GUO. A Study on Dynamic Compressive Mechanical Properties of Multi-size Polypropylene Fiber Concrete Under High Strain Rate[J]. Materials Reports, 2018, 32(2): 288 -294 .
[6] XU Zhichao, FENG Zhongxue, SHI Qingnan, YANG Yingxiang, WANG Xiaoqi, QI Huarong. Microstructure of the LPSO Phase in Mg98.5Zn0.5Y1 Alloy Prepared by Directional Solidification and Its Effect on Electromagnetic Shielding Performance[J]. Materials Reports, 2018, 32(6): 865 -869 .
[7] ZHOU Rui, LI Lulu, XIE Dong, ZHANG Jianguo, WU Mengli. A Determining Method of Constitutive Parameters for Metal Powder Compaction Based on Modified Drucker-Prager Cap Model[J]. Materials Reports, 2018, 32(6): 1020 -1025 .
[8] WANG Tong, BAO Yan. Advances on Functional Polyacrylate/Inorganic Nanocomposite Latex for Leather Finishing[J]. Materials Reports, 2017, 31(1): 64 -71 .
[9] HUANG Dajian, MA Zonghong, MA Chenyang, WANG Xinwei. Preparation and Properties of Gelatin/Chitosan Composite Films Enhanced by Chitin Nanofiber[J]. Materials Reports, 2017, 31(8): 21 -24 .
[10] YUAN Xinjian, LI Ci, WANG Haodong, LIANG Xuebo, ZENG Dingding, XIE Chaojie. Effects of Micro-alloying of Chromium and Vanadium on Microstructure and Mechanical Properties of High Carbon Steel[J]. Materials Reports, 2017, 31(8): 76 -81 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed