Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 179-181    https://doi.org/10.11896/j.issn.1005-023X.2017.024.035
  材料研究 |
不锈钢车顶弯梁拉弯成形研究
朱丽娟,王 敏,谷诤巍,何玲玲
吉林大学材料科学与工程学院,长春130022
Research on Stretch Bending Forming of Stainless Steel Curved Beam
ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling
College of Materials Science and Engineering, Jilin University, Changchun 130022
下载:  全 文 ( PDF ) ( 514KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 利用ABAQUS软件,对某轨道车辆的不锈钢车顶弯梁的拉弯成形过程进行了模拟研究,分析了L形型材拉弯后截面畸变及回弹的影响因素及控制方法。结果表明:模具立边深度对截面畸变的影响较大,拉伸量对其影响相对较小;包覆拉伸量对回弹时发生的截面扭曲的影响最大,补拉量对回弹时发生的侧面弯曲的影响最大;采用模具型面补偿法可以有效减小回弹,提高轮廓精度。实验证明,当预拉量和补拉量为1%、包覆拉伸量为7.5%和模具立边深度为H-0.5 mm并且模具型面补偿量为最大回弹量的1.1倍时,可以制造出高质量的不锈钢型材拉弯件。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
朱丽娟
王 敏
谷诤巍
何玲玲
关键词:  拉弯成形  弯梁  数值模拟  回弹    
Abstract: The stretch bend forming process of roof curve beam with stainless steel of rail vehicle was simulated by ABAQUS. The influence factors and control methods of the section distortion and the springback of L-section profile after bending were studied. Results showed that the vertical depth of the mold had great influence on the section distortion, while, the effect of stretching on the section distortion was relatively small. The wrap-elongation had the largest impact on the section distortion caused by the springback, the post-elongation had the largest impact on the side bending caused by springback. The mold surface compensation method could effectively reduce the springback, improve the accuracy of the contour. The experimental results showed that when the amount of pre-elongation and the amount of post-elongation were both 1%, the amount of wrap-elongation was 7.5%, the depth of the die was H-0.5 mm and the die surface amount was 1.1 times of the initial maximum springback amount, high quality stainless steel profile stretch bending parts could be produced.
Key words:  stretch bending    curve beam    numerical simulation    springback
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TG386  
基金资助: 国家自然科学基金青年科学基金(51301074);吉林省科技发展计划项目(2013010201JC)
通讯作者:  谷诤巍:男,1970年生,博士,教授,研究方向为金属板材成形技术 E-mail:gzweii@163.com   
作者简介:  朱丽娟:女,1979年生,博士,副教授,研究方向为高强度钢的强韧化机理 E-mail:ljzhu@jlu.edu.cn
引用本文:    
朱丽娟,王 敏,谷诤巍,何玲玲. 不锈钢车顶弯梁拉弯成形研究[J]. 《材料导报》期刊社, 2017, 31(24): 179-181.
ZHU Lijuan, WANG Min, GU Zhengwei, HE Lingling. Research on Stretch Bending Forming of Stainless Steel Curved Beam. Materials Reports, 2017, 31(24): 179-181.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.035  或          https://www.mater-rep.com/CN/Y2017/V31/I24/179
1 Frank V. Extrusion, channel, and extrusion bending: A review[J].J Mater Processing Technol, 1999,87:1.
2 Gu Zhengwei, Liu Huamin, Liu Yumei, et al. Simulation of stretch bending forming process of stainless section steel[J].Die Mould Ind, 2006(8):42(in Chinese).
谷诤巍,刘化民,刘玉梅,等. 不锈钢型材拉弯成形工艺模拟研究[J]. 模具工业,2006(8):42.
3 Diao Keshan, Zhou Xianbin, Jin Chaohai, et al. A numerical study on the force controlled stretch bending of aluminum extrusion with complex cross section[J]. Mater Sci Technol, 2004,12(4):413(in Chinese).
刁可山,周贤宾,金朝海,等. 复杂截面型材力控制拉弯成形数值模拟分析[J]. 材料科学与工艺,2004,12(4):413.
4 Paulsen F, Welo T. Application of numerical simulation in the bending of aluminium-alloy profiles[J].J Mater Processing Technol, 1996,58(2):274.
5 Diao Keshan, Zhou Xianbin, Li Xiaoxing, et al. Stretch bending of aluminum extrusion[J]. J Beijing University of Aeronautics, 2005,31(2):134(in Chinese).
刁可山, 周贤宾, 李晓星, 等. 矩形截面型材拉弯成形[J].北京航空航天大学学报, 2005,31(2):134.
6 Hopperstad O S, Berstad T, Ilstad H, et al. Effects of the yield criterion on local deformations in numerical simulation of profile forming[J]. J Mater Processing Technol, 1998,80-81(1):551.
7 Clausen A H, Hopperstad O S, Langseth M. Sensitivity of model parameters in stretch bending of aluminum extrusions[J]. Int J Mech Sci,2001,43(2):427.
8 Wang Shengman. Research on stretch bend forming of railway vehicle stainless steel profile components by numerical simulation and experiment[D].Dalian:Dalian Jiaotong University,2013(in Chinese).
王胜满. 轨道车辆车体不锈钢型材构件拉弯成形数值模拟与实验研究[D].大连:大连交通大学,2013.
[1] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[2] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[3] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[4] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[5] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[6] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[7] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[8] 郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
[9] 罗广瑞, 吴子彬, 长海博文, 翁文凭, 王东涛, 李一峰, 毛志福, 董鑫, 冯志鑫, 陈希, 张海涛, 朱慧颖, 张波. 车用铝合金弯曲成形回弹行为研究进展[J]. 材料导报, 2024, 38(18): 23030082-10.
[10] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[11] 赵楠, 刘鹏, 王林, 林书行, 李昊阳. 回转窑中回收炉气与煤粉混合燃烧的数值模拟[J]. 材料导报, 2024, 38(16): 23040062-6.
[12] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[13] 计鸿鑫, 任伟杰, 蒋先贤, 杜文宇, 孙静娜, 黄华贵. 镁合金板材弯曲回弹预测与控制研究进展[J]. 材料导报, 2024, 38(15): 23080183-7.
[14] 郑伍魁, 赵悦瑶, 王雅晨, 李辉. 用于泡沫混凝土制备的静态混合器模拟研究[J]. 材料导报, 2024, 38(15): 23010061-8.
[15] 姜琴, 刁珂龙, 杨谋存, 朱跃钊. 纳米流体中温热稳定性研究进展[J]. 材料导报, 2023, 37(S1): 23040330-10.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed