Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (24): 178-190    https://doi.org/10.11896/j.issn.1005-023X.2017.024.037
  材料研究 |
基于磁记忆方法的抽油杆裂纹扩展监测
冷建成,田洪旭,周国强,吴泽民
东北石油大学机械科学与工程学院,大庆 163318
Crack Propagation Monitoring of Sucker Rod Based on Magnetic Memory Method
LENG Jiancheng, TIAN Hongxu, ZHOU Guoqiang, WU Zemin
School of Mechanical Science and Engineering, Northeast Petroleum University, Daqing 163318
下载:  全 文 ( PDF ) ( 4718KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于拉-拉疲劳实验,利用磁记忆检测仪监测了抽油杆试件疲劳裂纹扩展的整个过程,提取了表征应力集中程度的磁信号合成梯度极限状态系数指标;并结合有限元方法计算了裂纹尖端的断裂力学参量,得到不同裂纹长度所对应的应力强度因子。结果表明:基于实验数据和仿真结果所建立的磁记忆信号特征指标与应力强度因子之间具有很好的一致性,可以有效反映疲劳裂纹的扩展过程以及累积损伤,为再制造前的毛坯筛选提供理论依据。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
冷建成
田洪旭
周国强
吴泽民
关键词:  磁记忆  裂纹扩展  断裂力学  有限元  抽油杆    
Abstract: The whole crack propagation process of sucker rod specimen was monitored by magnetic memory testing instrument on the basis of tension-tension fatigue experiments, and the synthetic gradient limit coefficients of magnetic signal characterizing stress concentration degree were extracted simultaneously. The fracture mechanics parameters of crack tip were computed by finite element method, and the stress intensity factors corresponding to different crack lengths were obtained. The results showed that the characteristic parameters of magnetic memory signal based on experimental data are in accordance with the stress intensity factors calculated by finite element simulation, which can reflect the fatigue crack propagation process and cumulative damage effectively, providing theoretical reference for blank selection before remanufacturing.
Key words:  magnetic memory technique    crack propagation    fracture mechanics    finite element method    sucker rod
出版日期:  2017-12-25      发布日期:  2018-05-08
ZTFLH:  TG115.28  
基金资助: 国家自然科学基金(11472076;51607035);黑龙江省博士后科研启动基金(LBH-Q16035)
作者简介:  冷建成:男,1977年生,博士,教授,主要从事无损检测和结构健康监测方面的研究 E-mail:lbyljc@163.com
引用本文:    
冷建成,田洪旭,周国强,吴泽民. 基于磁记忆方法的抽油杆裂纹扩展监测[J]. 《材料导报》期刊社, 2017, 31(24): 178-190.
LENG Jiancheng, TIAN Hongxu, ZHOU Guoqiang, WU Zemin. Crack Propagation Monitoring of Sucker Rod Based on Magnetic Memory Method. Materials Reports, 2017, 31(24): 178-190.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.024.037  或          https://www.mater-rep.com/CN/Y2017/V31/I24/178
1 Xu B S, Zhu S. Advanced remanufacturing technologies based on nano-surface engineering[C]∥Proc. 3rd Int. Conf. on Advances in Production Eng. Guangzhou, 1999: 35.
2 Jiang H F, Yang Y, Feng B, et al. High-precision MFL nondestructive detection system for remanufactured sucker rod[J]. China Petroleum Machinery, 2014,42(1):79(in Chinese).
姜怀芳, 杨芸, 冯搏, 等. 再制造抽油杆高精度漏磁无损检测系统[J]. 石油机械, 2014, 42(1): 79.
3 Dubov A A. A study of metal properties using the method of magnetic memory[J]. Metal Sci Heat Treat, 1997,39(9-10):401.
4 Huang H H, Liu R J, Zhang X, et al. Magnetic memory testing towards fatigue crack propagation of 510L steel[J]. J Mechan Eng, 2013,49(1):135(in Chinese).
黄海鸿, 刘儒军, 张曦, 等. 面向再制造的510L钢疲劳裂纹扩展磁记忆检测[J]. 机械工程学报, 2013,49(1):135.
5 Huang H H, Jiang S L, Yan W, et al. Characterization of spontaneous magnetic signals induced by cyclic bensile stress in crack propagation stage[J]. J Magn Magn Mater, 2014,365:70.
6 Huang H H, Jiang S L, Liu R J, et al. Investigation of magnetic memory signals induced by dynamic bending load in fatigue crack propagation process of structural steel[J]. J Nondestructive Evaluation, 2014,33(3):407.
7 Dong L H, Xu B S, Xue N, et al. Development of remaining life prediction of crankshaft remanufacturing core[J]. Adv Manufacturing, 2013,1(1):91.
8 Dong L H, Xu B S, Dong S Y, et al. Monitoring fatigue crack propagation of ferromagnetic materials with spontaneous abnormal magnetic signals[J]. Int J Fatigue, 2008,30(9):1599.
9 Jin B, Di X J, Zhang J J, et al. Metal magnetic memory signal feature of fatigue cracking propagation[J]. J Mater Eng, 2014(11):102(in Chinese).
金宝,邸新杰,张建军,等. 疲劳裂纹扩展的金属磁记忆信号特征[J]. 材料工程, 2014(11):102.
10Leng J C, Zhang H, Zhou G Q, et al. Experimental research on predicting fatigue life of remanufacturing sucker rod by magnetic memory testing[J]. J Mater Eng, 2016,44(9):103(in Chinese).
冷建成, 张辉, 周国强, 等. 再制造抽油杆疲劳寿命评估的磁记忆检测实验研究[J]. 材料工程, 2016,44(9):103.
11郦正能, 张纪奎. 工程断裂力学[M]. 北京: 北京航空航天大学出版社, 2012.
12Leng J C, Liu Y, Zhou G Q, et al. Metal magnetic memory signal response to plastic deformation of low carbon steel[J]. NDT E Int, 2013,55:42.
[1] 冯超, 杨子帆, 刘曰利. SnBiAg无铅钎料恒温激光焊接的数值模拟与实验研究[J]. 材料导报, 2025, 39(3): 24010216-6.
[2] 龚梓桑, 胡钢. 基于磁记忆技术的海洋出水铁质文物状态评估与监测——以南海Ⅰ号出水铁器为例[J]. 材料导报, 2025, 39(2): 24030002-6.
[3] 冷建成, 赵雷, 张新, 许宏伟. 基于磁记忆在线监测的再制造毛坯疲劳寿命预测方法[J]. 材料导报, 2025, 39(2): 23040250-6.
[4] 李冲, 晏阳阳, 杨祯彧, 宋德军, 胡伟民, 杨胜利, 田世伟, 江海涛. TA24合金多道次热变形行为及管材制备仿真[J]. 材料导报, 2025, 39(2): 23120078-7.
[5] 陈守东, 卢日环, 李杰, 孙建. 强剪切对单层晶极薄带轧制变形行为的影响[J]. 材料导报, 2024, 38(7): 22090135-8.
[6] 彭鹏, 邵宇鹰, 胡海敏, 李振明, 刘伟. 基于碲化铋基柔性热电器件的自取能温度传感器结构设计及性能研究[J]. 材料导报, 2024, 38(6): 22080105-5.
[7] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[8] 方新宇, 徐干成, 魏迎奇, 刘彦泉, 袁伟泽, 周俊鹏. 新型高强钢板在结构抗接触爆炸中的应用[J]. 材料导报, 2024, 38(5): 23060206-7.
[9] 马超, 解帅, 王永超, 冀志江, 吴子豪, 王静. 用于红外和雷达波隐身的水泥基复合材料[J]. 材料导报, 2024, 38(5): 23080165-9.
[10] 吴子豪, 苏荣华, 马超, 解帅, 冀志江, 王英翔, 王静. 轻骨料水泥基多功能吸波材料的制备及有限元分析[J]. 材料导报, 2024, 38(5): 23080253-7.
[11] 潘伶, 许冰冰, 任志英, 史林炜, 陈毅鹏. 基于金属橡胶的轻质波纹型夹层结构静态力学性能[J]. 材料导报, 2024, 38(4): 22080228-6.
[12] 苏三庆, 邓瑞泽, 王威, 易术春, 左付亮, 刘馨为, 李俊廷. 基于金属磁记忆的弯曲工字钢梁的力-磁效应[J]. 材料导报, 2024, 38(4): 22070065-8.
[13] 黄奎龙, 余刚, 方修洋, 张昊楠. 踏面匹配与初始裂纹形态交互作用下车轮多轴疲劳裂纹扩展特性[J]. 材料导报, 2024, 38(4): 22060161-5.
[14] 卞立波, 陶志, 赵阳光, 巴合卓力·克孜尔开勒迪, 赵乙平. 碱激发胶凝材料硬化体内Na+分布规律模拟[J]. 材料导报, 2024, 38(3): 22090192-6.
[15] 张宏吉, 彭文飞, 李贺, 邵熠羽, Moliar Oleksandr. Cu-20%Fe粉末异步轧制有限元模拟及工艺参数影响规律[J]. 材料导报, 2024, 38(3): 22090131-7.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed