Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (12): 149-153    https://doi.org/10.11896/j.issn.1005-023X.2017.012.031
  计算模拟 |
考虑不同应力水平影响的混凝土徐变预测模型修正
陈邦尚1, 陈松2, 王岩3, 宁聪4
1 重庆水利电力职业技术学院, 重庆 402160;
2 中建水务环保有限公司, 深圳 518118;
3 重庆同望水利水电工程设计有限公司, 重庆 401120;
4 重庆交通大学河海学院, 重庆 400074
A Correction for the Prediction Model of Concrete Creep Involving Different Stress Levels
CHEN Bangshang1, CHEN Song2, WANG Yan3, NING Cong4
1 Chongqing Water Resources and Electric Engineering College, Chongqing 402160;
2 China Construction Water and Environmental Protection Co,Ltd, Shenzhen 518118;
3 Chongqing Tongwang Water Conservancy and Hydropower Engineering Design Co,Ltd, Chongqing 401120;
4 School of River and Ocean Engineering, Chongqing Jiaotong University, Chongqing 400074
下载:  全 文 ( PDF ) ( 1566KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 为开展混凝土徐变预测模型修正研究,对不同应力水平下的混凝土进行了徐变试验和数值模拟,并进行了相互印证。通过数值模拟,研究了拉压应力、周期应力、双轴应力下的徐变特性,针对徐变预测模型CEB/FIP 1990估算精度低的现状,基于不同应力水平下混凝土徐变特性,结合工程实际给出了便于运用的徐变系数修正值。研究结果表明,采用的数值模拟方法为混凝土徐变预测模型的修正提供了一条新思路。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
陈邦尚
陈松
王岩
宁聪
关键词:  徐变系数  预测模型  不同应力水平  数值模拟    
Abstract: In order to carry out the research on the modification of concrete creep prediction model, the creep test and numerical simulation of concrete under different stress levels were carried out. Through numerical simulation, the creep characteristics of concrete under tensile and compressive stress, cyclic stress and biaxial stress were studied. For the low accuracy of the creep prediction model CEB/FIP 1990, the useful creep coefficient correction value was given based on creep characteristics of concrete under different stress levels. The results show that the numerical simulation method in this paper provides a new idea for the modification of concrete creep prediction model.
Key words:  creep coefficient    prediction model    different stress levels    numerical simulation
出版日期:  2017-06-25      发布日期:  2018-05-08
ZTFLH:  TU375  
作者简介:  陈邦尚:男,1970年生,博士,教授级高级工程师,研究方向为水利水电建筑工程管理 E-mail:23182169@sina.com
引用本文:    
陈邦尚, 陈松, 王岩, 宁聪. 考虑不同应力水平影响的混凝土徐变预测模型修正[J]. 《材料导报》期刊社, 2017, 31(12): 149-153.
CHEN Bangshang, CHEN Song, WANG Yan, NING Cong. A Correction for the Prediction Model of Concrete Creep Involving Different Stress Levels. Materials Reports, 2017, 31(12): 149-153.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.012.031  或          https://www.mater-rep.com/CN/Y2017/V31/I12/149
1 Jie Wencheng, Li Zite, Xu Yanzhao. Study on effect of concrete creep of long-term deflection of continuous rigid frame bridge[J]. J Henan University of Urban Construction,2012,21(1):4(in Chinese).
解文成,李子特,徐艳昭.混凝土徐变对连续刚构桥长期下挠的影响研究[J].河南城建学院学报,2012,21(1):4.
2 Cao Guohui, Hu Jiaxing, Zhang Kai, et al. Correction analysis on prediction model of concrete creep[J]. Build Struct,2014,44(5):45(in Chinese).
曹国辉,胡佳星,张锴,等.混凝土徐变预测模型修正分析[J].建筑结构,2014,44(5):45.
3 Yang Mingchao, Bu Tian. Correction of concrete box girder creep effect prediction model[J].J Wuhan Univ Technol:Transp Sci Eng,2015,39(2):441(in Chinese).
杨名超,卜天.混凝土简支箱梁徐变效应预测模型修正[J].武汉理工大学学报:交通科学与工程版,2015,39(2):441.
4 Wang Defa, Zhang Haobo. Uniaxial tensile creeo of concrete[J]. J Xi’an Jiaotong Univ,2000,34(3):95(in Chinese).
王德法,张浩博. 轴拉荷载下混凝土徐变性能的研究[J]. 西安交通大学学报,2000,34(3):95.
5 Hui Rongyan, Huang Guoxing, Yi Bingruo, et al. Experimental study on three axis of concrete[J].J Hydraul Eng,1993(7):75(in Chinese).
惠荣炎,黄国兴,易冰若,等. 混凝土三轴徐变的试验研究[J]. 水利学报,1993(7):75.
6 Huang Shengqian, Yang Yongqing, Li Xiaobin, et al. A uniform formulation of space creep of concrete under various stress state[J].Mater Rev:Res,2013,27(1):150(in Chinese).
黄胜前,杨永清,李晓斌,等.不同应力状态下混凝土空间徐变的统一表达式[J]. 材料导报:研究篇,2013,27(1):150.
7 Chen Song.Numerical analysis and experiments for high strength concrete creep[D].Nanjing: Nanjing Hydraulic Research Institute,2009(in Chinese).
陈松.混凝土徐变过程数值分析及试验研究[D].南京:南京水利科学研究院,2009.
8 Zhu Bofang. Modulus of elasticity of concrete,creep and relaxation coefficient[J].J Hydraul Eng,1985(9):54(in Chinese).
朱伯芳.混凝土的弹性模量、徐变度与应力松弛系数[J].水利学报,1985(9):54.
9 Chen Song, Wang Yan, Ning Cong. Macro-meso analysis for features of concrete creep under cyclic load[J]. Mater Rev:Res,2016,30(6):153(in Chinese).
陈松,王岩,宁聪.循环荷载下混凝土徐变特性的宏细观分析[J].材料导报:研究篇,2016,30(6):153.
10 黄国兴,惠荣炎,王秀军.混凝土徐变与收缩[M].北京:中国电力出版社,2011.
11 Zhao Qilin,Chen Li,Zhai Kewei,et al.Creep and shrinkage of high strength concrete for bridges under complex condition[J].J PLA Univ Sci Technol:Nat Sci Ed,2011,12(5):459(in Chinese).
赵启林,陈立,翟可为,等.复杂状态下桥用高强混凝土收缩徐变性能试验[J].解放军理工大学学报:自然科学版,2011,12(5):459(in Chinese).
12 Tang Yunqing, Ke Minyong, Li Xiaolin, et al. Numerical simulation for creep of high strength concrete and its experimental verification[J]. Hydro Sci Eng,2013(6):29(in Chinese).
唐云清,柯敏勇,李霄琳,等.高强混凝土双轴徐变数值模拟及试验验证[J].水利水运工程学报,2013(6):29.
[1] 宫晓威, 常庆明, 常佳琦, 鲍思前. 平面流铸制备Fe-3%Si硅钢微观组织的数值模拟[J]. 材料导报, 2025, 39(2): 23090214-7.
[2] 何涛, 马国政, 李海庆, 石佳东, 李振, 郭伟玲, 邢志国. 固体润滑齿轮接触疲劳寿命及影响因素研究现状[J]. 材料导报, 2025, 39(1): 23120091-15.
[3] 郭鑫鑫, 魏正英, 张永恒, 张帅锋. 电弧增材制造传热传质数值模拟技术综述[J]. 材料导报, 2024, 38(9): 22090175-7.
[4] 牛克心, 余为, 郝颖. 通孔球壳胞元结构压缩力学性能[J]. 材料导报, 2024, 38(9): 22100287-6.
[5] 金浏, 张晓旺, 郭莉, 吴洁琼, 杜修力. 加载速率对锈蚀钢筋与混凝土粘结性能的影响[J]. 材料导报, 2024, 38(8): 22100011-9.
[6] 董健苗, 何其, 周铭, 王振宇, 庄佳桥, 邹明璇, 李万金. 石墨烯水泥砂浆抗碳化试验及预测模型分析[J]. 材料导报, 2024, 38(5): 22070184-6.
[7] 梁宁慧, 毛金旺, 游秀菲, 刘新荣, 周侃. 多尺度聚丙烯纤维混凝土弯曲疲劳寿命试验及数值模拟[J]. 材料导报, 2024, 38(4): 22040023-8.
[8] 张天刚, 潘启越, 张志强, 曹思雨. 铝合金表面阳极氧化膜激光清洗机制分析[J]. 材料导报, 2024, 38(24): 23100128-10.
[9] 金浏, 杨健, 吴洁琼, 杜修力. 考虑混凝土细观非均质性的钢筋混凝土结构疲劳寿命预测概率模型[J]. 材料导报, 2024, 38(20): 23090009-8.
[10] 郑莲宝, 李旺, 王松伟, 徐勇, 宋鸿武. 基于场量传递的流动-传热-凝固过程耦合计算模型及其应用[J]. 材料导报, 2024, 38(20): 23080032-7.
[11] 邱国兴, 蔡明冲, 张毅, 苏炳瑞, 杨永坤, 李小明. 基于灰色关联分析和机器学习的高炉铁水硅含量预测[J]. 材料导报, 2024, 38(20): 23080170-6.
[12] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[13] 赵楠, 刘鹏, 王林, 林书行, 李昊阳. 回转窑中回收炉气与煤粉混合燃烧的数值模拟[J]. 材料导报, 2024, 38(16): 23040062-6.
[14] 闾川阳, 李科桥, 盛剑翔, 顾小龙, 石磊, 杨建国, 贺艳明. AlN/Cu钎焊接头残余应力的数值模拟研究[J]. 材料导报, 2024, 38(16): 23030229-9.
[15] 郑伍魁, 赵悦瑶, 王雅晨, 李辉. 用于泡沫混凝土制备的静态混合器模拟研究[J]. 材料导报, 2024, 38(15): 23010061-8.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed