Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 68-72    https://doi.org/10.11896/j.issn.1005-023X.2017.011.009
  材料综述 |
低温球磨制备纳米晶铝/铝基复合材料的研究进展和应用前景*
张坤1, 李炯利1,2, 陈军洲1,2, 王旭东1,2, 何晓磊1,2, 武岳1,2, 张海平1,2
1 北京航空材料研究院,北京 100095;
2 北京市先进铝合金材料及应用工程技术研究中心,北京 100095
Advances in Bulk Nanostructured Aluminum Alloys and Aluminum-matrix Composites Prepared via Cryomilling
ZHANG Kun1, LI Jiongli1,2, CHEN Junzhou1,2, WANG Xudong1,2, HE Xiaolei1,2, WU Yue1,2, ZHANG Haiping1,2
1 Beijing Institute of Aeronautical Materials, Beijing 100095;
2 Beijing Engineering Research Center of Advanced Aluminum Alloys and Applications, Beijing 100095
下载:  全 文 ( PDF ) ( 1483KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 详细介绍了国内外采用低温球磨粉末冶金法制备纳米晶铝及其铝基复合材料的研究进展。通过对比分析国内外在材料研制和工装设备研发等方面存在的主要差距,提出了国内在纳米晶铝应用研究中存在的问题、解决措施及发展方向。最后,对纳米晶铝/铝基复合材料未来的应用前景进行了展望。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
张坤
李炯利
陈军洲
王旭东
何晓磊
武岳
张海平
关键词:  纳米晶  铝合金  铝基复合材料  低温球磨  工程应用    
Abstract: Research on the bulk nanostructured aluminum alloys and aluminum-matrix composites prepared via cryomilling is reviewed. The main gap between domestic and foreign on material preparation and equipment development is compared and analyzed. Besides, the existing problems, solutions and development directions of nanostructured aluminum in application study at home are also discussed. Finally, some suggestions and the application prospects on the bulk nanostructured aluminum alloys and aluminum-matrix composites are put forward.
Key words:  nanocrystalline    aluminum alloys    aluminum-matrix composite    cryomilling    engineering applications
出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TG146.2+1  
基金资助: 北京航空材料研究院创新基金(JK65150208)
作者简介:  张坤:女,1976年生,博士,高级工程师,主要从事铝合金及其复合材料研发与应用研究 E-mail:zhk76x@sina.com
引用本文:    
张坤, 李炯利, 陈军洲, 王旭东, 何晓磊, 武岳, 张海平. 低温球磨制备纳米晶铝/铝基复合材料的研究进展和应用前景*[J]. 《材料导报》期刊社, 2017, 31(11): 68-72.
ZHANG Kun, LI Jiongli, CHEN Junzhou, WANG Xudong, HE Xiaolei, WU Yue, ZHANG Haiping. Advances in Bulk Nanostructured Aluminum Alloys and Aluminum-matrix Composites Prepared via Cryomilling. Materials Reports, 2017, 31(11): 68-72.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.009  或          https://www.mater-rep.com/CN/Y2017/V31/I11/68
1 张立德,牟季美.纳米材料和纳米结构[M].北京:科学出版社,2005.
2 Ye J C, Han B Q, Lee Z, et al. A tri-modal aluminum based composite with super-high strength [J]. Scripta Mater,2005,53:481.
3 Williams J C, Starke J R E A. Progress in structural materials for aerospace systems [J]. Acta Mater,2003,51(19):5775.
4 Bampton C C, Wooten J R. Method for preparing rivets from cryomilled aluminum alloys and rivets produced thereby:USA, 7435306B2[P].2008-10-14.
5 Tellkamp V L, Melmed A, Lavernia E J. Mechanical behavior and microstructure of a thermally stable bulk nanostructure Al alloy[J]. Metall Maters Trans A, 2001,32:2335.
6 Lu Ke, Zhou Fei. Recent research progress on nanocrystalline materials[J]. Acta Metall Sin, 1997,33(1):99 (in Chinese).
卢柯, 周飞. 纳米晶体材料的研究现状[J]. 金属学报, 1997,33(1):99.
7 Tellkamp V L, Lavernia E J. Processing and mechanical properties of nanocrystalline 5083 Al alloy [J]. Nano Structured Mater,1999,12:249.
8 Hu T, Ma K, Topping T D, et al. Improving the tensile ductility and uniform elongation of high-strength ultrafine-grained Al alloys by lowering the grain boundary misorientation angle [J]. Scripta Mater,2014, 78-79:25.
9 Ma K K, Wen H M, Hu T, et al. Mechanical behavior and strengthening mechanisms in ultrafine grain precipitation-strengthened aluminum alloy [J]. Acta Mater,2014,62:141.
10 Ma K K, Hu T, Yang H, et al. Coupling of dislocations and precipitates: Impact on the mechanical behavior of ultrafine grained Al-Zn-Mg alloys [J]. Acta Mater,2016,103:153.
11 Witkin D, Lee Z, Rodriguez R, et al. Al-Mg alloy engineered with bimodal grain size for high strength and increased ductility [J]. Scripta Mater,2003,49:297.
12 Han B Q, Lee Z, et al. Deformation behavior of bimodal nanostructured 5083 Al alloys [J]. Metall Mater Trans A,2005,36:957.
13 Zhang Z H, Han B Q, Chung K H, et al. On the behavior of microstructures with multiple length scales [J]. Metall Mater Trans A,2006,37:2265.
14 Li Y, et al. Investigation of aluminum-based nanocomposites with ultra-high strength [J]. Mater Sci Eng A,2009,527:305.
15 Vogt R. Ultrafine-grained aluminum and boron carbide metal matrix composites [D]. California: University of California,2010.
16 Cheng Junsheng, Yang Bin, Zhang Jishan, et al. Research on grain stability under room temperature of nanocrystalline Al-Zn-Mg-Cu alloy cryomilled powders [J]. Heat Treatment Metals,2008,33(3):17(in Chinese).
程军胜,杨滨,张济山,等. 液氮球磨Al-Zn-Mg-Cu合金纳米晶粉末的室温稳定性研究[J]. 金属热处理, 2008,33(3):17.
17 Li Jiongli, Li Shasha, Xiong Yancai, et al. Nanocrystalline aluminum powders prepared via cryomilling [J]. J Aeronaut Mater,2012,32(2):38(in Chinese).
李炯利, 厉沙沙, 熊艳才, 等. 低温球磨制备纳米晶纯铝粉体[J]. 航空材料学报,2012,32(2):38.
18 Li Jiongli, Li Shasha, Xiong Yancai, et al. Preparation of super high strength bulk nanocrystalline Al by cryomilling [J].Chinese J Nonferrous Metals,2013, 23(5):1182(in Chinese).
李炯利, 厉沙沙, 熊艳才, 等. 低温球磨制备超高强度块体纳米晶纯铝[J]. 中国有色金属学报,2013, 23(5):1182.
19 美国金属学会. 金属手册[M]. 范玉殿, 张效忠, 白新德, 译. 北京: 机械工业出版社,1994.
20 Bonetti E, Pasquini L, Sampaolesi E. The influence of grain size on the mechanical properties of nanocrystalline aluminum[J]. Nano Structured Mater, 1997,9:611.
21 Sun Xiukui, Cong Hongtao, Xu Jian, et al. Synthesis and tensile properties of nanocrystalline Al(Ⅰ)[J]. Chinese J Mater Res,1998,12(6):645(in Chinese).
孙秀魁, 丛洪涛, 徐坚, 等. 纳米晶Al的制备及拉伸性能(Ⅰ)[J]. 材料研究学报,1998,12(6):645.
22 Sun Xiukui, Cong Hongtao, Xu Jian, et al. Synthesis and tensile properties of nanocrystalline Al(Ⅱ)[J]. Chinese J Mater Res,1998,12(6):651(in Chinese).
孙秀魁, 丛洪涛, 徐坚, 等. 纳米晶Al的制备及拉伸性能(Ⅱ)[J]. 材料研究学报,1998,12(6):651.
23 Cheng J S, Cui H, Chen H B, et al. Bulk nanocrystalline Al prepared by cryomilling[J]. J University of Science and Technology Beijing,2007, 14(6):523.
24 Wang Deqin, Zhang Dawei. Structure and mechanical properties of bulk nanocrystalline aluminum by cryomilling [J]. J Dalian Jiaotong University,2010, 31(1):68(in Chinese).
王德庆, 张大伟. 低温球磨制备块体纳米Al晶体材料的组织与性能[J]. 大连交通大学学报,2010,31(1):68.
25 Li Jiongli,Zhang Kun,Xiong Yancai. Advances in research on nanocrystalline Al-Mg alloys with high performance [J]. J Mater Eng,2013(11):75(in Chinese).
李炯利,张坤,熊艳才. 高性能纳米晶Al-Mg合金的研究进展[J]. 材料工程,2013(11):75.
26 Li J L, Xiong Y C, Wang X D, et al. Microstructure and tensile properties of bulk nanostructured aluminum/graphene composites prepared via cryomilling [J]. Mater Sci Eng A,2015,626:400.
[1] 郭洪兵, 刘曰利. 基于Cs4PbBr6纳米晶的超高灵敏度电阻型湿敏传感器[J]. 材料导报, 2025, 39(3): 24040002-7.
[2] 王鹤龙, 史贵丙, 王丽, 李宗臻. 高饱和磁通密度铁基非晶纳米晶磁粉芯的研究进展[J]. 材料导报, 2025, 39(3): 24010092-9.
[3] 苏悦, 闫楠, 白晓宇, 付林, 张启军, 梁斌, 王保栋, 王立彬, 张英杰, 张安琪. 预拌流态固化土的工程特性研究进展及应用[J]. 材料导报, 2024, 38(9): 23070212-7.
[4] 左志东, 刘先斌, 刘吉波, 汪小锋, 陈剑斌. 汽车用2024-T351铝合金的动态力学行为各向异性[J]. 材料导报, 2024, 38(8): 22080196-9.
[5] 汪愿, 孙运刚, 符彬, 刘文浩, 宣善勇, 刘鹏. 基于VARI工艺的碳纤维复合材料快速修理飞机铝合金裂纹的研究[J]. 材料导报, 2024, 38(6): 22020135-6.
[6] 张京京, 易幼平, 黄始全, 何海林, 董非, 王当. 2195铝合金中温变形条件下的静态再结晶机理及动力学[J]. 材料导报, 2024, 38(4): 22040369-9.
[7] 陈卓坤, 张晓芳, 刘语馨, 虢婷, 孙志平, 周青, 陈永楠. 纳米多晶金属的晶界设计及强韧化研究进展[J]. 材料导报, 2024, 38(20): 23070227-9.
[8] 毛鹏燕, 赵晖, 李宏达, 邰凯平. 碳纳米管-铜复合薄膜材料的抗辐照损伤性能研究[J]. 材料导报, 2024, 38(19): 22120135-6.
[9] 李雪伍, 杜少盟, 闫佳洋, 石甜. 铝合金超疏水表面制备方法及防腐应用研究现状[J]. 材料导报, 2024, 38(19): 23030276-10.
[10] 张彪, 刘家招, 杨鑫三, 孙宇萱. 基于XFEM的汽车铝合金断裂行为表征[J]. 材料导报, 2024, 38(19): 22100262-5.
[11] 蔡佳思, 刘湘波, 王新元, 魏艳红. 强制流动下铝铜合金激光焊接熔池凝固过程组织演化模拟[J]. 材料导报, 2024, 38(19): 23060085-7.
[12] 罗广瑞, 吴子彬, 长海博文, 翁文凭, 王东涛, 李一峰, 毛志福, 董鑫, 冯志鑫, 陈希, 张海涛, 朱慧颖, 张波. 车用铝合金弯曲成形回弹行为研究进展[J]. 材料导报, 2024, 38(18): 23030082-10.
[13] 邱飒蔚, 雷贝, 叶拓, 张越, 蒋家传, 王涛. 铝合金自冲铆疲劳性能及寿命预测[J]. 材料导报, 2024, 38(18): 24030108-7.
[14] 刘书俊, 肖文龙, 杨昌一, 吴舒凡. 激光粉末床熔融增材制造耐热铝合金的研究进展[J]. 材料导报, 2024, 38(18): 24080026-9.
[15] 邱飒蔚, 蒋家传, 叶拓, 张越, 雷贝, 王涛. AA7075-T6铝合金电阻点焊工艺参数优化研究[J]. 材料导报, 2024, 38(17): 23120177-8.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed