Please wait a minute...
《材料导报》期刊社  2017, Vol. 31 Issue (11): 151-157    https://doi.org/10.11896/j.issn.1005-023X.2017.011.021
  金属腐蚀与防护 |
氯离子对球墨铸铁管土壤腐蚀影响机理研究*
郭浩1, 田一梅1, 裴云生2, 陈瑛1, 刘星飞1
1 天津大学环境科学与工程学院,天津 300072;
2 九三集团天津大豆科技有限公司,天津 300461
Mechanism of the Effect of Chloride Ions on Soil Corrosion for Ductile Iron Pipes
GUO Hao1, TIAN Yimei1, PEI Yunsheng2, CHEN Ying1, LIU Xingfei1
1 School of Environmental Science and Engineering, Tianjin University, Tianjin 300072;
2 Tianjin Soya Science and Technology Co. Ltd., Jiusan Group, Tianjin 300461
下载:  全 文 ( PDF ) ( 2280KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基于埋片加速腐蚀试验,采用电化学阻抗谱测量和微观分析技术,研究了氯离子(Cl-)对球墨铸铁腐蚀规律、腐蚀层结构以及腐蚀产物的影响。主要结论如下:(1)球墨铸铁主要发生局部腐蚀,且随Cl-含量的增加,腐蚀速率增大,出现严重腐蚀坑;其腐蚀坑深与腐蚀时间成幂函数关系,当Cl-含量高于0.515%时,局部腐蚀情况尤为严重。(2)球墨铸铁腐蚀经历点蚀诱导期、点蚀发展期和稳定腐蚀期3个阶段;在前两个阶段电荷传递为腐蚀速率控制步骤,第三个阶段转变为氧的扩散控制。(3)腐蚀产物主要为铁的氧化物和羟基氧化物;高Cl-环境下产生的β-FeOOH和铁的羟基氯化物均能加速球墨铸铁的电化学腐蚀。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郭浩
田一梅
裴云生
陈瑛
刘星飞
关键词:  球墨铸铁管  土壤腐蚀  氯离子  电化学阻抗谱    
Abstract: An accelerated buried coupon test coupled with electrochemical impedance spectroscopy and microanalysis was conducted to research the effect of chloride ions (Cl-) on soil corrosion mechanism, corrosion layer structure and corrosion products. The main conclusions are as follows. (1) Localized corrosion was the main corrosion type, and the corrosion rate and pitting depth of ductile iron increased with the increasing of Cl- content; the pitting depth and corrosion time presented a power function relationship, and the local corrosion was especially serious when the Cl- content was higher than 0.515%. (2) Three stages were observed during ductile iron corrosion: pitting induction stage, pitting developmental stage, and stable corrosion stage; charge transfer was the control step in the first two stages and oxygen mass diffusion turned to be the key step in the third stage. (3) Iron oxides and iron oxyhydroxides were main crystal minerals; β-FeOOH and ferrous oxychlorides appeared in high Cl- environment accelerated the electrochemical corrosion of ductile iron.
Key words:  ductile iron pipe    soil corrosion    chlorine ion    electrochemical impedance spectroscopy (EIS)
出版日期:  2017-06-10      发布日期:  2018-05-04
ZTFLH:  TG172.4  
基金资助: 国家自然科学基金(51278333);高等学校博士学科点专项科研基金(20130032110032)
通讯作者:  田一梅:通讯作者,女,1959年生,博士,教授,博士研究生导师,研究方向为供水管道腐蚀与防护 E-mail:ymtian_2000@126.com   
作者简介:  郭浩:男,1987年生,博士研究生,研究方向为供水管道腐蚀与防护 E-mail:tjuguohao@163.com
引用本文:    
郭浩, 田一梅, 裴云生, 陈瑛, 刘星飞. 氯离子对球墨铸铁管土壤腐蚀影响机理研究*[J]. 《材料导报》期刊社, 2017, 31(11): 151-157.
GUO Hao, TIAN Yimei, PEI Yunsheng, CHEN Ying, LIU Xingfei. Mechanism of the Effect of Chloride Ions on Soil Corrosion for Ductile Iron Pipes. Materials Reports, 2017, 31(11): 151-157.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.011.021  或          https://www.mater-rep.com/CN/Y2017/V31/I11/151
1 Wang H W, Shen S M, Yu X C. Review on research methods of soil corrosion for buried pipeline steels[J]. J Nanjing University of Technology:Nat Sci Ed,2008,30(4):105(in Chinese).
王和文,沈士明,於孝春.埋地管道钢土壤腐蚀研究方法进展[J].南京工业大学学报,2008,30(4):105.
2 Li J H, Zhang Y, et al. Water supply ductile pipe and tube rupture reason analysis[J]. Heat Treat Met,2011(S1):351(in Chinese).
李家华,张颖,等.供水球墨铸铁管及管件破裂原因分析[J].金属热处理,2011(S1):351.
3 Yang J, et al. Trend of development of piping material of water supply[J]. Heilongjiang Environmental J,2002, 26(2):8(in Chinese).
杨锦,等.论给水管材发展的新趋向[J].黑龙江环境通报,2002,26(2):8.
4 Huang F, Yu L, Liu J, et al. Relative function of influence factors on pitting sensitivity of X70 steel in a simulated soil solution[J]. Corros Sci Protection Technol,2010,22(3):166(in Chinese).
黄峰,余璐,刘静,等.X70钢在模拟土壤溶液中点蚀敏感性影响因素交互作用研究[J].腐蚀科学与防护技术,2010,22(3):166.
5 Du N, Ye C, Tian W M, et al. 304 stainless steel pitting behavior by means of electrochemical impedance spectroscopy[J]. J Mater Eng,2014(6):68(in Chinese).
杜楠,叶超,田文明,等.304不锈钢点蚀行为的电化学阻抗谱研究[J].材料工程,2014(6):68.
6 Shi Y H, Yu Y, Liang P, et al. Corrosion behaviors of 316L stainless steel in chloride ion environment[J]. Mater Protection,2015, 48(8):29(in Chinese).
史艳华,于洋,梁平,等.316L不锈钢在氯离子环境中的腐蚀行为[J].材料保护,2015,48(8):29.
7 Gao Y. Study on chloride ion corrosion behaviors of long-distance pipeline[D]. Xi’an: Xi’an Shiyou University, 2013(in Chinese).
高英.长输管线氯离子腐蚀行为研究[D].西安:西安石油大学,2013.
8 Du X Y, et al. Influence of Cl- concentration in soil on the corrosion rate[J]. Guangdong Chem Ind,2001, 38(9):41(in Chinese).
杜新燕,等.氯离子浓度对土壤腐蚀速率的影响[J].广东化工,2001,38(9):41.
9 Maslehuddin M, Al-Zahrani M M, Ibrahim M, et al. Effect of chloride concentration in soil on reinforcement corrosion[J]. Constr Build Mater,2007,21(8):1825.
10 Li Y Q, Li J, Cai D C. Electrochemical study on the corrosion behavior of X70 steel in soil with different Cl-[J]. J China West Normal University:Nat Sci,2008,29(1):93(in Chinese).
李永强,李江,蔡铎昌.土壤中氯离子对X70钢腐蚀影响的电化学研究[J].西华师范大学学报,2008,29(1):93.
11 Ma Y, et al. Corrosion of low carbon steel in atmospheric environments of different chloride content[J]. Corros Sci,2009, 51(5):997.
12 Alizadeh M, et al. The influence of microstructure on the protective properties of the corrosion product layer generated on the welded API X70 steel in chloride solution[J]. Corros Sci,2013,70(3):170.
13 Gadala I M, Alfantazi A. Electrochemical behavior of API-X100 pipeline steel in NS4, near-neutral, and mildly alkaline pH simulated soil solutions[J]. Corros Sci,2014,82(5):45.
14 Yin G Q, Zhang L H, Chang S W, et al. A brief introduction of methods used in soil corrosion researches[J]. Corros Sci Protection Technol,2004,16(6):367(in Chinese).
尹桂勤,张莉华,常守文,等.土壤腐蚀研究方法概述[J].腐蚀科学与防护技术,2004,16(6):367.
15 Xie Y, Li Y, Sun T, et al. Study on the protection performance of γ-FeOOH and α-FeOOH formed in-situ on Q235[J]. Chinese Sci Bull,2008(23):2848(in Chinese).
谢颖,李瑛,孙挺,等.原位生长的纯γ-FeOOH和α-FeOOH锈膜对Q235钢保护性能的研究[J].科学通报,2008(23):2848.
16 Nie X H, Li Y L, Li J K, et al. Morphology, products and corrosion mechanism analysis of Q235 carbon steel in sea-shore salty soil[J]. J Mater Eng,2010(8):24(in Chinese).
聂向晖,李云龙,李记科,等.Q235碳钢在滨海盐土中的腐蚀形貌、产物及机理分析[J].材料工程,2010(8):24.
17 Yang F, Shi B Y, Gu J, et al. Morphological and physicochemical characteristics of iron corrosion scales formed under different water source histories in a drinking water distribution system[J]. Water Res,2012,46(16):5423.
18 Nishimura T, Noda K, Kodama T, et al. Electrochemical behavior of rust formed on carbon steel in a wet/dry environment containing chloride ions[J]. Corrosion,2000,56(9):935.
19 Kamimura T, Hara S, Miyuki H, et al. Composition and protective ability of rust layer formed on weathering steel exposed to various environments[J]. Corros Sci,2006,48(9):2799.
20 Refait P, Génin J M R. The mechanisms of oxidation of ferrous hydroxychloride β-Fe2(OH)3Cl in aqueous solution: The formation of akaganeite vs goethite[J]. Corros Sci,1997,39(3):539.
21 Neff D, Dillmann P, Bellot-Gurlet L, et al. Corrosion of iron archaeo-logical artefacts in soil: Characterisation of the corrosion system[J]. Corros Sci,2005,47(2):515.
22 Wei D, Xiao K, Chen C F, et al. Localized electrochemical impe-dance spectroscopy of the corrosion behavior of carbon steel in the alkaline solutions with Cl- and SO42-[J]. Sci Technol Rev,2013,31(20):43(in Chinese).
魏丹,肖葵,陈长风,等.碳钢在含Cl-和SO42-碱性溶液中腐蚀规律的局部交流阻抗[J].科技导报,2013,31(20):43.
23 Xu C M. Corrosion electrochemical characteristics of X80 pipeline steel in southwest area soil[J]. J Iron Steel Res,2001,23(9):25(in Chinese).
胥聪敏.X80管线钢在西南地区土壤中的腐蚀电化学特征[J].钢铁研究学报,2001,23(9):25.
24 Zhao W M, Wang Y, Xue J, et al. EIS study of the corrosion failure process of steel coated by nickel base alloy[J]. Acta Metall Sin, 2005,41(2):178(in Chinese).
赵卫民,王勇,薛锦,等.镍基合金涂层包覆钢腐蚀失效过程的电化学阻抗谱研究[J].金属学报,2005,41(2):178.
25 Ma Y, Li Y, Wang F. The effect of β-FeOOH on the corrosion behavior of low carbon steel exposed in tropic marine environment[J]. Mater Chem Phys,2008,112(3):844.
26 Antony H, Perrin S, Dillmann P, et al. Electrochemical study of indoor atmospheric corrosion layers formed on ancient iron artifacts[J]. Electrochim Acta,2007,52(27):7754.
[1] 汪淑琪, 左晓宝, 邹欲晓, 刘嘉源. 阳离子对石灰石-煅烧黏土水泥净浆氯离子结合能力的影响[J]. 材料导报, 2025, 39(3): 23110226-8.
[2] 应敬伟, 苏飞鸣, 席晓莹, 刘剑辉. 石墨烯纳米片增强水泥砂浆的抗氯离子扩散和抗硫酸盐侵蚀性能[J]. 材料导报, 2024, 38(9): 22090282-9.
[3] 龙武剑, 余阳, 何闯, 李雪琪, 熊琛, 冯甘霖. 纳米增强水泥基复合材料抗氯离子迁移及固化性能综述[J]. 材料导报, 2024, 38(7): 22090138-10.
[4] 王元战, 杨旻鑫, 龚晓龙, 王禹迟, 郭尚. 考虑地下水位影响的碱渣土地基半埋混凝土内氯离子传输试验研究[J]. 材料导报, 2024, 38(7): 22010226-7.
[5] 杨志强, 王振, 黄法礼, 易忠来, 蒋金洋. 纳米氧化铝提升海洋环境高速铁路桥梁混凝土结构服役寿命研究[J]. 材料导报, 2024, 38(7): 22060232-8.
[6] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[7] 陈文龙, 周旭东, 张宇, 张云升, 马智聪. 电化学除氯对钢筋腐蚀状态及其周围混凝土微观结构的影响[J]. 材料导报, 2024, 38(23): 23070258-8.
[8] 王帆,赵国仙, 方堃, 裴文霞, 丁浪勇, 刘冉冉. 3Cr钢在含O2的CO2环境中的腐蚀行为研究[J]. 材料导报, 2024, 38(23): 23070093-8.
[9] 郑建岚, 王雅思, 陈僖, 张旺城. 含氯再生骨料混凝土中钢筋抗锈蚀性能试验研究[J]. 材料导报, 2024, 38(22): 23110219-7.
[10] 张伟杰, 盛广侠, 王兰心, 王赟程, 王立国, 刘志勇, 蒋金洋, 张嘉文. 复杂服役环境下无砟轨道水泥基材料性能演变的研究综述[J]. 材料导报, 2024, 38(22): 23080140-18.
[11] 龙武剑, 钟安楠, 何闯. 硅酸盐水泥氯离子固化机理及影响因素研究进展[J]. 材料导报, 2024, 38(21): 23080022-11.
[12] 汪伟, 范志宏, 赵家琦, 杨海成. 强辐照作用下水泥浆体微结构与抗氯离子侵蚀性能研究[J]. 材料导报, 2024, 38(21): 23080026-7.
[13] 杨绿峰, 龙凤波, 孙继玮, 陈俊武. 混凝土暴露试验的稳定时长与试验分析方法[J]. 材料导报, 2024, 38(2): 22020091-7.
[14] 顾春平, 姚程阳, 陈士龙, 王倩楠. 溶液浓度与组成成分对氯离子在裂缝中传输速率的影响[J]. 材料导报, 2024, 38(19): 22100103-7.
[15] 郑建岚, 王晓敏, 张建全. 含氯再生骨料混凝土抗氯离子渗透性能的研究[J]. 材料导报, 2024, 38(18): 23050208-6.
[1] Lanyan LIU,Jun SONG,Bowen CHENG,Wenchi XUE,Yunbo ZHENG. Research Progress in Preparation of Lignin-based Carbon Fiber[J]. Materials Reports, 2018, 32(3): 405 -411 .
[2] Haoqi HU,Cheng XU,Lijing YANG,Henghua ZHANG,Zhenlun SONG. Recent Advances in the Research of High-strength and High-conductivity CuCrZr Alloy[J]. Materials Reports, 2018, 32(3): 453 -460 .
[3] Yanchun ZHAO,Congyu XU,Xiaopeng YUAN,Jing HE,Shengzhong KOU,Chunyan LI,Zizhou YUAN. Research Status of Plasticity and Toughness of Bulk Metallic Glass[J]. Materials Reports, 2018, 32(3): 467 -472 .
[4] Xinxing ZHOU,Shaopeng WU,Xiao ZHANG,Quantao LIU,Song XU,Shuai WANG. Molecular-scale Design of Asphalt Materials[J]. Materials Reports, 2018, 32(3): 483 -495 .
[5] Yongtao TAN, Lingbin KONG, Long KANG, Fen RAN. Construction of Nano-Au@PANI Yolk-shell Hollow Structure Electrode Material and Its Electrochemical Performance[J]. Materials Reports, 2018, 32(1): 47 -50 .
[6] Ping ZHU,Guanghui DENG,Xudong SHAO. Review on Dispersion Methods of Carbon Nanotubes in Cement-based Composites[J]. Materials Reports, 2018, 32(1): 149 -158 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅠ:Raw Materials and Mix Proportion Design Method[J]. Materials Reports, 2018, 32(1): 159 -166 .
[8] Guiqin HOU,Yunkai LI,Xiaoyan WANG. Research Progress of Zinc Ferrite as Photocatalyst[J]. Materials Reports, 2018, 32(1): 51 -57 .
[9] Jianxiang DING,Zhengming SUN,Peigen ZHANG,Wubian TIAN,Yamei ZHANG. Current Research Status and Outlook of Ag-based Contact Materials[J]. Materials Reports, 2018, 32(1): 58 -66 .
[10] Jing WANG,Hongke LIU,Pingsheng LIU,Li LI. Advances in Hydrogel Nanocomposites with High Mechanical Strength[J]. Materials Reports, 2018, 32(1): 67 -75 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed