Please wait a minute...
材料导报编辑部  2017, Vol. 31 Issue (10): 1-5    https://doi.org/10.11896/j.issn.1005-023X.2017.010.001
  材料研究 |
滴加速率对TiO2/RGO复合材料结构和储钠性能的影响*
杨绍斌,张琴,沈丁,董伟,刘超
辽宁工程技术大学材料科学与工程学院, 阜新 123000
Effect of Feeding Rate on the Structure and Storage Properties of TiO2/RGO Composites
YANG Shaobin, ZHANG Qin, SHEN Ding, DONG Wei, LIU Chao
College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000
下载:  全 文 ( PDF ) ( 1458KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 以钛酸丁酯为前驱物,无水乙醇为溶剂,采用溶胶-凝胶法和热处理法制备了钠离子电池TiO2/还原氧化石墨烯复合负极材料(TiO2/RGO),研究了溶胶-凝胶法过程中反应物钛酸丁酯滴加速率对TiO2/RGO复合材料形貌结构及储钠性能的影响。结果表明,TiO2/RGO复合材料由锐钛矿相TiO2和还原氧化石墨烯组成,TiO2富集在RGO片层边缘。电化学测试结果表明,随着滴加速率的增大,首次放电比容量和库伦效率呈现先增大后减小的趋势;当滴加速率为1.0 mL/min时,TiO2/RGO复合材料具有良好的储钠性能,在1C(1C=20 mA·g-1)倍率下首次放电比容量和库伦效率分别为140.14 mAh·g-1和27.92%,具有良好的循环和倍率性能。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
杨绍斌
张琴
沈丁
董伟
刘超
关键词:  钠离子电池  还原氧化石墨烯  二氧化钛  电性能  滴加速率    
Abstract: With ethanol as solvent and Ti(OBu)4 as precursor, the process for preparing TiO2/reduced graphene oxide composite (TiO2/RGO) by sol-gel method and heat treatment was studied. The effect of Ti(OBu)4 feeding rate on the morphology, structure and storage properties of TiO2/RGO in the sol-gel process was studied. Results showed that the TiO2/RGO composite was composed of anatase TiO2 and reduced graphene oxide, and TiO2 concentrated at the edge of the RGO layer. Electrochemical test results showed that the initial discharge capacity and coulombic efficiency increased first and then decreased with the increase of cycle times. When the feeding rate is 1.0 mL/min, the TiO2/RGO composites possessed good performance of sodium storage, as the initial discharge capacity and initial coulombic efficiency were 140.14 mAh·g-1 and 27.92% at a current rate of 1C (1C=20 mA·g-1), as well as good cycle and rate performance.
Key words:  sodium ion battery    reduced graphene oxide    titanium dioxide    electric performance    feeding rate
发布日期:  2018-05-08
ZTFLH:  O646  
基金资助: *国家自然科学基金(51274119)
作者简介:  杨绍斌:男,1963年生,博士,教授,博士研究生导师,主要从事电化学储能材料研究E-mail:lgdysb@163.com
引用本文:    
杨绍斌,张琴,沈丁,董伟,刘超. 滴加速率对TiO2/RGO复合材料结构和储钠性能的影响*[J]. 材料导报编辑部, 2017, 31(10): 1-5.
YANG Shaobin, ZHANG Qin, SHEN Ding, DONG Wei, LIU Chao. Effect of Feeding Rate on the Structure and Storage Properties of TiO2/RGO Composites. Materials Reports, 2017, 31(10): 1-5.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.010.001  或          https://www.mater-rep.com/CN/Y2017/V31/I10/1
1 Yang Z H. Synthesis and electrochemical performance of Na2Ti3O7@CNT anode materials for sodium-ion batteries[D]. Suzhou: Soochow University,2015(in Chinese).
杨中华. 钠离子电池负极材料Na2Ti3O7@CNT的制备及电化学性能研究[D]. 苏州: 苏州大学,2015.
2 Bartunek V, Huber S, Sedmidubsky D, et al. CoO and Co3O4 nanoparticles with a tunable particle size[J]. Ceram Int,2014,40(8):12591.
3 Ge D H, Geng H B, Wang J Q, et al. Porous nano-structure Co3O4 anode materials generated from coordination-driven self-assembled aggregates for advanced lithium ion batteries[J]. Nanoscale,2014,6(16):9689.
4 Wang L, Pumera M. Residual metallic impurities within carbon nanotubes play a dominant role in supposedly “metal-free” oxygen reduction reactions[J]. Chem Commun,2014,50(84):12662.
5 Shi X, Zhang Z, Fu Y, et al. Self-template synthesis of nitrogen-doped porous carbon derived from zeolitic imidazolate framework-8 as an anode for sodium ion batteries[J]. Mater Lett,2015,161:332.
6 Buchholz D, Moretti A, Kloepsch R, et al. Toward Na-ion batte-ries-synthesis and characterization of a novel high capacity Na ion intercalation material[J]. Chem Mater,2013,25(2):142.
7 Pan H, Hu Y S, Chen L. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage[J]. Energy Environ Sci,2013,6:2338.
8 Slater M D, Kim D, Lee E, et al. Sodium-ion batteries[J]. Adv Funct Mater,2013,23:947.
9 Li T, Long Z H, Zhang D H. Synthesis and electrochemical properties of Fe2O3/rGO nanocomposites as lithium and sodium storage materials[J]. Acta Physico-Chimica Sinica,2016,32(2):573(in Chinese).
李婷, 龙志辉, 张道洪. Fe2O3/rGO纳米复合物的制备及其储锂和储钠性能[J]. 物理化学学报,2016,32(2):573.
10 He H N, Wang H Y, Tang Y G, et al. Current studies of anode materials for sodium-ion battery[J]. Prog Chem,2014(4):572(in Chinese).
何菡娜, 王海燕, 唐有根, 等. 钠离子电池负极材料[J]. 化学进展,2014(4):572.
11 Chen Y, Zhang Z L, Sui Z J, et al. Preparation and electrochemical performance of Ni(OH)2 nanowires/three-dimensional graphene composite materials[J]. Acta Physico-Chimica Sinica,2015,31(6):1105(in Chinese).
陈阳, 张梓澜, 隋志军, 等. 氢氧化镍纳米线/三维石墨烯复合材料的制备及其电化学性能[J]. 物理化学学报,2015,31(6):1105.
12 Xu J, Yang D Z, Liao X Z, et al. Electrochemical performances of reduced graphene oxide/titanium dioxide composites for sodium-ion batteries[J]. Acta Physico-Chimica Sinica,2015,31(5):913(in Chinese).
许婧, 杨德志, 廖小珍, 等. 还原氧化石墨烯/TiO2复合材料在钠离子电池中的电化学性能[J].物理化学学报,2015,31(5):913.
13 Yang Y L, Xin X L, Hu D Q, et al. Analysis on factors affecting preparation of TiO2 gel by sol-gel method[J]. J Beijing Technology and Business University:Nat Sci Ed,2007,25(3):9(in Chinese).
杨依隆, 辛秀兰, 胡代强, 等. 溶胶-凝胶法制备TiO2凝胶的影响因素及方法改进[J]. 北京工商大学学报:自然科学版,2007,25(3):9.
14 Zhang J F, Lu J, Yang X Y, et al. Synthesis of porous carbon Nanosheets for application in sodium-ion battery[J]. J Electroche-mistry,2015,21(6):548(in Chinese).
张京飞, 陆静, 杨晓宇, 等. 多孔碳纳米片的合成及在钠离子电池中的应用[J]. 电化学,2015,21(6):548.
15 Hui Xiong, Michael D Slater, Mahalingam Balasubramanian, et al. Amorphous TiO2 nanotube anode for rechargeable sodium ion batte-ries[J]. Phys Chem Lett,2011,2:2560.
16 Qin Wei. The microwave-assisted synthesis of metal sulfide-graphene composites for the anode of sodium-ion batteries[D]. Shanghai: East China Normal University,2016(in Chinese).
秦伟. 金属硫化物-石墨烯复合物的微波法制备及其在钠离子电池负极的应用[D]. 上海: 华东师范大学,2016.
[1] 张昌松, 王向阳, 魏立柱, 王如鹏. 折叠结构的PVDF/BTO复合薄膜压电纳米发电机的制备及性能研究[J]. 材料导报, 2024, 38(6): 22080132-6.
[2] 杨菊香, 贾园, 马文建, 李朋娜, 屈颖娟. 互穿网络结构的二氧化硅/环氧树脂复合材料的制备及介电性能研究[J]. 材料导报, 2024, 38(5): 22080082-6.
[3] 王培远, 邓根成, 朱登贵, 李永浩, 孙淑敏, 方少明. 高熵材料在锂/钠离子电池中的应用研究进展[J]. 材料导报, 2024, 38(22): 23040299-8.
[4] 孟令欣, 邓伟, 胡思远, 冯嘉唯, 王照盼. Al2O3/PEI复合介质的高温储能特性研究[J]. 材料导报, 2024, 38(22): 23110021-8.
[5] 冯文彪, 李鑫, 张亚龙. Mg3Sb2合金中Mg空位对电子传输性能的影响[J]. 材料导报, 2024, 38(17): 22110149-7.
[6] 郑栋浩, 贺格平, 弥元梅, 皇甫慧君, 张慧敏, 李彦霞, 袁蝴蝶. 氧化石墨烯添加量对MoSe2复合rGO电极材料电化学性能的影响[J]. 材料导报, 2024, 38(16): 23060178-8.
[7] 张鹏伟, 宋惠, 白慧萍, 易剑, 江南, 西村一仁. 太赫兹行波管用金刚石输能窗研究进展[J]. 材料导报, 2024, 38(16): 22120014-9.
[8] 吴妹, 徐晓磊, 李晓, 刘玖红, 于光睿, 段好东, 韩玉玺, 于青, 王忠卫. 甲基取代二芳基氧化膦阻燃改性环氧树脂的研究[J]. 材料导报, 2024, 38(16): 23040213-10.
[9] 唐晶晶, 李晓滢, 陈言蹊, 周柳禧, 文康, 周其杰, 陈松, 杨娟, 周向阳. 钠离子电池生物质基硬碳负极材料的研究进展[J]. 材料导报, 2024, 38(15): 23040228-13.
[10] 王海燕, 咸龙帝, 尚天蓉, 姚佳岐, 燕小斌, 李澜. BT@PANI核壳粒子的绿色制备及PVDF基复合材料的介电性能[J]. 材料导报, 2024, 38(13): 22120173-6.
[11] 刘洪亮, 郭志迎, 袁晓峰, 朱尊伟, 高倩倩, 张忻. 熔体旋甩工艺对Mg2(Si0.4Sn0.6)Sb0.015固溶体微结构和热电性能的影响研究[J]. 材料导报, 2024, 38(12): 22090010-5.
[12] 朱玉方, 张慧丽, 梁丰国, 杨新伟, 陈长科, 买买提江·依米提, 马俊红. 还原氧化石墨烯的可控制备及表征[J]. 材料导报, 2024, 38(12): 22110271-6.
[13] 杨蕾, 朱茂兰, 翁威, 衷水平. 锂电池用电解铜箔性能调控研究进展[J]. 材料导报, 2024, 38(10): 22110058-9.
[14] 钱红梅, 洪铤锴. N-S共掺杂CN/NS-TiO2纳米复合材料的制备及可见光催化性能[J]. 材料导报, 2023, 37(S1): 22110216-7.
[15] 孙怡坤, 朱召贤, 王涛, 牛波, 龙东辉. 耐400 ℃高温氰酸酯导电胶的制备与性能[J]. 材料导报, 2023, 37(5): 21060190-5.
[1] Wei ZHOU, Xixi WANG, Yinlong ZHU, Jie DAI, Yanping ZHU, Zongping SHAO. A Complete Review of Cobalt-based Electrocatalysts Applying to Metal-Air Batteries and Intermediate-Low Temperature Solid Oxide Fuel Cells[J]. Materials Reports, 2018, 32(3): 337 -356 .
[2] Dongyong SI, Guangxu HUANG, Chuanxiang ZHANG, Baolin XING, Zehua CHEN, Liwei CHEN, Haoran ZHANG. Preparation and Electrochemical Performance of Humic Acid-based Graphitized Materials[J]. Materials Reports, 2018, 32(3): 368 -372 .
[3] Yunzi LIU,Wei ZHANG,Zhanyong SONG. Technological Advances in Preparation and Posterior Treatment of Metal Nanoparticles-based Conductive Inks[J]. Materials Reports, 2018, 32(3): 391 -397 .
[4] Bingwei LUO,Dabo LIU,Fei LUO,Ye TIAN,Dongsheng CHEN,Haitao ZHOU. Research on the Two Typical Infrared Detection Materials Serving at Low Temperatures: a Review[J]. Materials Reports, 2018, 32(3): 398 -404 .
[5] Yingke WU,Jianzhong MA,Yan BAO. Advances in Interfacial Interaction Within Polymer Matrix Nanocomposites[J]. Materials Reports, 2018, 32(3): 434 -442 .
[6] Zhengrong FU,Xiuchang WANG,Qinglin JIN,Jun TAN. A Review of the Preparation Techniques for Porous Amorphous Alloys and Their Composites[J]. Materials Reports, 2018, 32(3): 473 -482 .
[7] Fangyuan DONG,Shansuo ZHENG,Mingchen SONG,Yixin ZHANG,Jie ZHENG,Qing QIN. Research Progress of High Performance ConcreteⅡ: Durability and Life Prediction Model[J]. Materials Reports, 2018, 32(3): 496 -502 .
[8] Lixiong GAO,Ruqian DING,Yan YAO,Hui RONG,Hailiang WANG,Lei ZHANG. Microbial-induced Corrosion of Concrete: Mechanism, Influencing Factors,Evaluation Indices, and Proventive Techniques[J]. Materials Reports, 2018, 32(3): 503 -509 .
[9] Ningning HE,Chenxi HOU,Xiaoyan SHU,Dengsheng MA,Xirui LU. Application of SHS Technique for the High-level Radioactive Waste Disposal[J]. Materials Reports, 2018, 32(3): 510 -514 .
[10] Haoran CHEN, Yingdong XIA, Yonghua CHEN, Wei HUANG. Low-dimensional Perovskites: a Novel Candidate Light-harvesting Material for Solar Cells that Combines High Efficiency and Stability[J]. Materials Reports, 2018, 32(1): 1 -11 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed