Please wait a minute...
材料导报  2017, Vol. 31 Issue (1): 30-42    https://doi.org/10.11896/j.issn.1005-023X.2017.01.005
  材料综述 |
杂多酸掺杂质子交换膜的制备、结构及性能
郜雪松1,2,3,罗 锋3,杨叶华3,龚兴厚1,2,3,胡 涛1,2,3,吴崇刚1,2,3
1 湖北工业大学绿色轻工材料湖北省重点实验室, 武汉 430068;
2 绿色轻质材料与加工湖北工业大学协同创新中心, 武汉 430068;
3 湖北工业大学材料与化学工程学院, 武汉 430068
Heteropolyacid-doped Proton-exchange Membranes:Preparation, Structure and Properties
GAO Xuesong1,2,3, LUO Feng3, YANG Yehua3, GONG Xinghou1,2,3, HU Tao1,2,3, WU Chonggang1,2,3
1 Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan 430068;
2 Collaborative Innovation Center of Green Light-weight Materials and Processing, Hubei University of Technology, Wuhan 430068;
3 School of Materials and Chemical Engineering, Hubei University of Technology, Wuhan 430068
下载:  全 文 ( PDF ) ( 1893KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 作为含有多金属氧酸Keggin分子构型的固体强酸,杂多酸(HPAs)具有优异的吸水性、质子传导性(cp)、机械、热及化学稳定性。HPA掺杂陶瓷或聚合物质子交换膜(PEMs)可以有效提高复合PEMs的亲水性、cp、燃料阻隔性、机械、热及化学稳定性,同时显著降低其cp及燃料阻隔性的温度与湿度依赖性。当HPA掺杂陶瓷时,两者之间的氢键作用导致HPA在基体中的流失率低、分散性强且掺杂量高,此时复合PEMs的cp(10-1 S/cm数量级)较基体PEMs(10-3~10-2 S/cm)大幅升高;而当HPA掺杂磺化聚合物时,两者之间的静电排斥力造成HPA在基体中的流失率高、分散性差且掺杂量低,此时复合PEMs的cp(10-1 S/cm数量级)较基体PEMs(10-2~10-1 S/cm)仅小幅升高。为了有效降低HPA在聚合物基体中的流失率,可以采用聚合物膜“三明治”状包覆复合PEMs、盐化HPA、改性基体或通过第三组分负载HPA以分别在HPA与基体或负载之间形成氢键或静电引力等手段;对于HPA的负载改性,由于陶瓷或聚合物负载在基体中易团簇,相应地HPA在基体中的分散性与掺杂量并未提高。有时采用HPA与吸水性较强的磷酸共掺杂陶瓷基体或负载,以协同提高复合PEMs的cp,然而效果并不显著。以上各种结构的HPA掺杂PEMs通常由溶液浇铸法、自组装法、溶胶-凝胶法及浸润法等制备;不同方法往往相互关联,即制备过程可能涉及两种或3种方法的耦合使用。改性HPA或其负载以显著提高HPA在磺化聚合物基体中的分散性与掺杂量,借此构建全新、高效的质子传输通道形态以实现复合PEMs的超高cp(100 S/cm数量级),是今后PEMs技术的重点发展方向之一。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
郜雪松
罗 锋
杨叶华
龚兴厚
胡 涛
吴崇刚
关键词:  质子交换膜  杂多酸  掺杂  质子传导性  流失率    
Abstract: As a strong solid-acid with a Keggin molecular-configuration of polyoxometalate, heteropolyacids (HPAs) exhibit superior hygroscopy, proton conductivity (cp), as well as mechanical, thermal and chemical stabilities. Doping of ceramics or polymers with an HPA endows the resulting composite proton-exchange membranes (PEMs) with efficiently improved hydrophily, cp, fuel barrier property, as well as mechanical, thermal and chemical stabilities, and also the considerably decreased dependencies of their cp and fuel barrier property on temperature and humidity. When HPA is doped with ceramics, the hydrogen bonding between the two components results in a low rate of the HPA running-off, high dispersion and high doping capacity of the HPA in the matrix, and the cp of the composite PEMs(10-1 S/cm) is significantly enhanced compared to that of the matrix PEMs(ca.10-3-10-2 S/cm). When HPA is doped with sulfonated polymers, the electrostatic repulsion between the two components leads to more HPA run-off, much lower dispersion and low doping capacity of the HPA in the polymeric matrix, and the cp of the composite PEMs(10-1 S/cm) is only slightly higher than that of the matrix PEMs (ca. 10-2-10-1 S/cm). To reduce the running-off rate of an HPA from polymeric matrices, different approaches can be employed, such as use of sandwiching polymer membranes to protect the composite PEMs, salination of the HPA, modification of the matrices or support of the HPA on the third component to form hydrogen bonding/electrostatic attractions between the HPA and the matrices or the support. For the modification of the HPA support, the dispersion and doping capacity of the HPA are not improved in the matrices because the ceramic or polymeric support tends to form cluster within the matrices. Occasionally, an HPA and hygroscopic phosphoric-acid are jointly employed to dope ceramic matrices or supports to synergistically enhance the cp of composite PEMs, which has no obvious effect. The aforementioned HPA-doped PEMs of various structures generally are prepared by solution-casting, self-assembly, sol-gel and infiltration methods, and a preparation process possibly involves two or three types of methods. To modify an HPA or its support for higher dispersion and doping capacity of the HPA within sulfonated-polymer matrices, and construct an original, efficient proton-transport channel configurations to accomplish an ultrahigh cp (100 S/cm) for composite PEMs, is one of the key future development directions for the PEMs technology.
Key words:  proton-exchange membrane    heteropolyacid    doping    proton conductivity    running-off rate
出版日期:  2017-01-10      发布日期:  2018-05-02
ZTFLH:  O646  
  TM911.48  
基金资助: 湖北省自然科学基金(2014CFA094);人社部留学人员科技活动项目择优资助基金(人社厅函[2013]277号);湖北工业大学博士科研启动基金(BSQD14007)
作者简介:  郜雪松:男,1994年生,硕士研究生,研究方向为质子交换膜的改性和应用 E-mail:15527573614@163.com 胡涛:通讯作者,女,1986年生,博士,讲师,主要从事离子改性功能有机硅材料及其衍生物研究 E-mail:hutao@mail.hbut.edu.cn 吴崇刚:通讯作者,男,1974年生,博士,教授,主要从事离子交联型聚合物及其衍生功能与高性能材料研究 E-mail:cgwu@mail.hbut.edu.cn
引用本文:    
郜雪松, 罗 锋, 杨叶华, 龚兴厚, 胡 涛, 吴崇刚. 杂多酸掺杂质子交换膜的制备、结构及性能[J]. 材料导报, 2017, 31(1): 30-42.
GAO Xuesong, LUO Feng, YANG Yehua, GONG Xinghou, HU Tao, WU Chonggang. Heteropolyacid-doped Proton-exchange Membranes:Preparation, Structure and Properties. Materials Reports, 2017, 31(1): 30-42.
链接本文:  
https://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2017.01.005  或          https://www.mater-rep.com/CN/Y2017/V31/I1/30
1 Wang L, Meng Y Z, Gao C M, et al. Synthesis and properties of sulfonated poly(arylene ether) for proton exchange membrane[J]. Acta Chimica Sinica,2007,65(14):1403(in Chinese).
王雷, 孟跃中, 高春梅, 等. 质子交换膜用磺化聚芳醚的合成与性能研究[J].化学学报,2007,65(14):1403.
2 Li H, Tang Y, Wang Z, et al. A review of water flooding issues in the proton exchange membrane fuel cell[J]. J Power Sources,2008,178(1):103.
3 Guhan S, Sangeetha D. Evaluation of sulfonated poly(ether ether ketone) silicotungstic acid composite membranes for fuel cell applications[J]. Int J Polymeric Mater,2009,58(2):87.
4 Keggin J F. Structure of the molecule of 12-phosphotungstic acid[J]. Nature,1933,131(3321):908.
5 Li L, Wang Y X. A hybrid membrane of poly(vinyl alcohol) and phosphotungstic acid for fuel cells[J]. Chinese J Chem Eng,2002,10(5):614.
6 Lin C W, Thangamuthu R, Yang C J. Proton-conducting membranes with high selectivity from phosphotungstic acid-doped poly(vinyl alcohol) for DMFC applications[J]. J Membr Sci,2005,253(1):23.
7 Tazi B, Savadogo O. Effect of various heteropolyacids (HPAs) on the characteristics of Nafion-HPAs membranes and their H2/O2 polymer electrolyte fuel cell parameters[J]. J New Mater Electrochem Systems,2001,4(3):187.
8 Tian H, Savadogo O. Silicotungstic acid Nafion composite membrane for proton-exchange membrane fuel cell operation at high temperature[J]. J New Mater Electrochem Systems,2006,9(1):61.
9 Ramani V, Kunz H R, Fenton J M. Stabilized heteropolyacid/Nafion composite membranes for elevated temperature/low relative humidity PEFC operation[J]. Electrochimica Acta,2005,50(5):1181.
10 Ramani V, Kunz H R, Fenton J M. Investigation of Nafion/HPA composite membranes for high temperature/low relative humidity PEMFC operation[J]. J Membr Sci,2004,232(1):31.
11 Zhang H, Zhu B, Xu Y. Composite membranes of sulfonated poly(phthalazinone ether ketone) doped with 12-phosphotungstic acid (H3PW12O40) for proton exchange membranes[J]. Solid State Io-nics,2006,177(13):1123.
12 Gao P. Study on proton exchange membrane of sulfonated anime[D]. Beijing: Beijing Jiaotong University,2007(in Chinese).
高平. 磺化芳烃聚合物质子交换膜的研究[D]. 北京:北京交通大学,2007.
13 Li L, Xu L, Wang Y X. Phosphotungstic acid/SPEEK proton conducting composite membrane[J]. Chem J Chinese Universities,2004,25(2):388(in Chinese).
李磊, 许莉, 王宇新. 磷钨酸/磺化聚醚醚酮质子导电复合膜[J]. 高等学校化学学报,2004,25(2):388.
14 Celso F, Mikhailenko S D, Kaliaguine S, et al. SPEEK based composite PEMs containing tungstophosphoric acid and modified with benzimidazole derivatives[J]. J Membr Sci,2009,336(1):118.
15 Kim Y S, Wang F, Hickner M, et al. Fabrication and characterization of heteropolyacid (H3PW12O40)/directly polymerized sulfonated poly(arylene ether sulfone) copolymer composite membranes for higher temperature fuel cell applications[J]. J Membr Sci,2003,212(1):263.
16 Madaeni S S, Amirinejad S, Amirinejad M. Phosphotungstic acid doped poly(vinyl alcohol)/poly(ether sulfone) blend composite membranes for direct methanol fuel cells[J]. J Membr Sci,2011,380(1):132.
17 Kim Y S, Einsla B, Sankir M, et al. Structure-property-perfor-mance relationships of sulfonated poly(arylene ether sulfone)s as a polymer electrolyte for fuel cell applications[J]. Polymer,2006,47(11):4026.
18 Alcaide F, Alvarez G, Ganborena L, et al. Proton-conducting membranes from phosphotungstic acid-doped sulfonated polyimide for direct methanol fuel cell applications[J]. Polym Bull,2009,62(6):813.
19 Wang Z, Ni H Z, Zhang M Y. Heteropolyacid/sulfonated poly(aryle ether ketone sulfone) composite proton exchange membrane for high temperature fuel cell applications[J]. Acta Materiae Compos Sinica,2009,26(2):41(in Chinese).
王哲, 倪宏哲,张明耀. 磷钨酸/磺化聚芳醚酮砜复合型高温燃料电池用质子交换膜[J]. 复合材料学报,2009,26(2):41.
20 Zhang H B. Synthesis and properties of sulfonated poly(arylene ether ketone) proton exchange membrane materials[D]. Changchun: Jilin University,2005(in Chinese).
张海博. 磺化聚芳醚酮聚合物系列质子交换膜材料的合成及性能研究[D]. :吉林大学,2005.
21 Deng H N, Wang Y X. Preparation and properties of proton conducting composite membrane from sulfonated poly(phthalazinone ether ketone) and phosphotungstic acid[J]. Acta Physico-Chimica Sinica,2007,23(8):1235(in Chinese).
邓会宁, 王宇新. 磷钨酸/磺化杂萘联苯聚醚酮复合质子交换膜的制备及其性能[J]. 物理化学学报,2007,23(8):1235.
22 Deng H N. A study on electrolyte membranes based on poly(phthalazinone aromatic ether)s[D]. Tianjin: Tianjin University,2004(in Chinese).
邓会宁. 含有杂萘联苯的聚芳醚电解质膜研究[D]. 天津: 天津大学,2004.
23 Jang W, Choi S, Lee S, et al. Characterizations and stability of polyimide-phosphotungstic acid composite electrolyte membranes for fuel cell[J]. Polym Degrad Stab,2007,92(7):1289.
24 Amirinejad M, Madaeni S S, Rafiee E, et al. Cesium hydrogen salt of heteropolyacids/Nafion nanocomposite membranes for proton exchange membrane fuel cells[J]. J Membr Sci,2011,377(1):89.
25 Amirinejad M, Madaeni S S, Navarra M A, et al. Preparation and characterization of phosphotungstic acid-derived salt/Nafion nanocomposite membranes for proton exchange membrane fuel cells[J]. J Power Sources,2011,196(3):988.
26 Staiti P, Arico A S, Baglio V, et al. Hybrid Nafion-silica membranes doped with heteropolyacids for application in direct methanol fuel cells[J]. Solid State Ionics,2001,145(1):101.
27 Li M, Shao Z G, Zhang H, et al. Self-humidifying Cs2.5H0.5PW12-O40/Nafion/PTFE composite membrane for proton exchange membrane fuel cells[J]. Electrochem Solid-State Lett,2006,9(2):A92.
28 Dogan H, Inan T Y, Unveren E, et al. Effect of cesium salt of tungstophosphoric acid (Cs-TPA) on the properties of sulfonated polyether ether ketone (SPEEK) composite membranes for fuel cell applications[J]. Int J Hydrogen Energy,2010,35(15):7784.
29 Zaidi S M J, Mikhailenko S D, Robertson G P, et al. Proton conducting composite membranes from polyether ether ketone and heteropolyacids for fuel cell applications[J]. J Membr Sci,2000,173(1):17.
30 Oh S Y, Yoshida T, Kawamura G, et al. Inorganic-organic compo-site electrolytes consisting of polybenzimidazole and Cs-substituted heteropoly acids and their application for medium temperature fuel cells[J]. J Mater Chem,2010,20(30):6359.
31 Xu C, Wu X, Wang X, et al. Composite membranes of polybenzimidazole and caesium-salts-of-heteropolyacids for intermediate temperature fuel cells[J]. J Mater Chem,2011,21(16):6014.
32 Xiao Y, Xiang Y, Xiu R, et al. Development of cesium phosphotungstate salt and chitosan composite membrane for direct methanol fuel cells[J]. Carbohydr Polym,2013,98(1):233.
33 Shao Z G, Joghee P, Hsing I M. Preparation and characterization of hybrid Nafion-silica membrane doped with phosphotungstic acid for high temperature operation of proton exchange membrane fuel cells[J]. J Membr Sci,2004,229(1):43.
34 Zaidi S M J, Ahmad M I. Novel SPEEK/heteropolyacids loaded MCM-41 composite membranes for fuel cell applications[J].J Membr Sci,2006,279(1):548.
35 Mohtar S S, Ismail A F, Matsuura T. Preparation and characterization of SPEEK/MMT-STA composite membrane for DMFC application[J]. J Membr Sci,2011,371(1):10.
36 Lee S H, Choi S H, Gopalan S A, et al. Preparation of new self-humidifying composite membrane by incorporating graphene and phosphotungstic acid into sulfonated poly(ether ether ketone) film[J]. Int J Hydrogen Energy,2014,39(30):17162.
37 Wu H, Shen X, Cao Y, et al. Composite proton conductive membranes composed of sulfonated poly(ether ether ketone) and phosphotungstic acid-loaded imidazole microcapsules as acid reservoirs[J]. J Membr Sci,2014,451:74.
38 Cui Z, Xing W, Liu C, et al. Chitosan/heteropolyacid composite membranes for direct methanol fuel cell[J]. J Power Sources,2009,188(1):24.
39 Cui Z, Liu C, Lu T, et al. Polyelectrolyte complexes of chitosan and phosphotungstic acid as proton-conducting membranes for direct methanol fuel cells[J]. J Power Sources,2007,167(1):94.
40 Yamada M, Honma I. Heteropolyacid-encapsulated self-assembled materials for anhydrous proton-conducting electrolytes[J]. J Phys Chem B,2006,110(41):20486.
41 Yang M, Lu S, Lu J, et al. Layer-by-layer self-assembly of PDDA/PWA-Nafion composite membranes for direct methanol fuel cells[J]. Chem Commun,2010,46(9):1434.
42 Zhao C, Lin H, Zhang Q, et al. Layer-by-layer self-assembly of polyaniline on sulfonated poly(arylene ether ketone) membrane with high proton conductivity and low methanol crossover[J]. Int J Hydrogen Energy,2010,35(19):10482.
43 Zhao C, Lin H, Cui Z, et al. Highly conductive, methanol resistant fuel cell membranes fabricated by layer-by-layer self-assembly of inorganic heteropolyacid[J]. J Power Sources,2009,194(1):168.
44 Lin H, Zhao C, Ma W, et al. Layer-by-layer self-assembly of in situ polymerized polypyrrole on sulfonated poly(arylene ether ketone) membrane with extremely low methanol crossover[J]. Int J Hydrogen Energy,2009,34(24):9795.
45 Tang H, Pan M, Jiang S P. Self assembled 12-tungstophosphoric acid-silica mesoporous nanocomposites as proton exchange membranes for direct alcohol fuel cells[J]. Dalton Transactions,2011,40(19):5220.
46 Tang H, Pan M, Lu S, et al. One-step synthesized HPW/meso-silica inorganic proton exchange membranes for fuel cells[J]. Chem Commun,2010,46(24):4351.
47 Jiang S P. Functionalized mesoporous materials as new class high temperature proton exchange membranes for fuel cells[J]. Solid State Ionics,2014,262:307.
48 Zhou Y, Yang J, Su H, et al. Insight into proton transfer in phosphotungstic acid functionalized mesoporous silica-based proton exchange membrane fuel cells[J]. J Am Chem Soc,2014,136(13):4954.
49 Lu J, Tang H, Lu S, et al. A novel inorganic proton exchange membrane based on self-assembled HPW-meso-silica for direct methanol fuel cells[J]. J Mater Chem,2011,21(18):6668.
50 Jin H, Wu Q, Pang W. Preparation and conductivity of tungstovanadogermanic heteropoly acid supported on mesoporous silicate SBA-15[J]. Mater Lett,2004,58(29):3657.
51 Yan X M, Mei P, Mi Y, et al. Proton exchange membrane with hydrophilic capillaries for elevated temperature PEM fuel cells[J]. Electrochem Commun,2009,11(1):71.
52 Chen L, Tang H, Pan M. Periodic Nafion-silica-heteropolyacids electrolyte for PEM fuel cell operated near 200 ℃[J]. Int J Hydrogen Energy,2012,37(5):4694.
53 Ramani V, Kunz H R, Fenton J M. Effect of particle size reduction on the conductivity of Nafion/phosphotungstic acid composite membranes[J]. J Membr Sci,2005,266(1):110.
54 Staiti P, Freni S, Hocevar S. Synthesis and characterization of proton-conducting materials containing dodecatungstophosphoric and dodecatungstosilic acid supported on silica[J]. J Power Sources,1999,79(2):250.
55 Inoue T, Thanganathan U, Nogami M. Performance of H2/O2 fuel cell using membrane electrolyte of phosphotungstic acid-modified 3-glycidoxypropyl-trimethoxysilanes[J]. J Membr Sci,2008,323(1):148.
56 Wu Q, Tao S, Lin H, et al. Preparation and conductivity of solid high-proton conductor silica gels containing 12-tungstogermanic he-teropoly acid[J]. Mater Sci Eng B,2000,68(3):161.
57 Wu Q. Preparation and proton-conductibility of silica gel containing 64 wt% undecatungstocobaltoaluminic heteropoly acid[J]. Mater Lett,2002,56(1):19.
58 Wu Q. Preparation and conductibility of silica gels composited with undecatungstochromoferrous heteropoly acid[J]. Mater Chem Phys,2003,77(1):204.
59 Wu Q, Chen Q, Cai X, et al. Preparation and conductivity of solid high-proton conductor silica gel containing 80 wt% decatungstodivanadogermanic acid[J]. Mater Lett,2007,61(3):663.
60 Wang J Q, Wu Q Y. The preparation and proton conductivity of decatungstomolybdovanadogermanic heteropolyacid-doped silica gel[J]. J Molecular Sci,2006,22(3):168(in Chinese).
王家庆, 吴庆银. 十钨钼钒锗杂多酸复合二氧化硅凝胶的制备与质子导电性[J]. 分子科学学报,2006,22(3):168.
61 Wu Q, Lin H, Meng G. Preparation and performance of high-proton conductive silica gels containing molybdotungstovanadogermanic he-teropoly acid[J]. J Solid State Chem,1999,148(2):419.
62 Mioc U B, Milonjic S K, Stamenkovic V, et al. Structural properties and proton conductivity of the 12-tungstophosphoric acid doped aluminosilicate gels[J]. Solid State Ionics,1999,125(1):417.
63 Thanganathan U, Nogami M. Properties of PWA/ZrO2-doped phosphosilicate glass composite membranes for low-temperature H2/O2 fuel cell applications[J]. J Membr Sci,2008,323(1):11.
64 Mosa J, Larramona G, Duran A, et al. Synthesis and characterization of P2O5-ZrO2-SiO2 membranes doped with tungstophosphoric acid (PWA) for applications in PEMFC[J]. J Membr Sci,2008,307(1):21.
65 Thanganathan U, Nogami M. PMA/ZrO2-P2O5-SiO2 glass compo-site membranes: H2/O2 fuel cells[J]. J Membr Sci,2009,334(1):123.
66 Thanganathan U, Nogami M. Proton-conducting glass electrolyte[J]. Anal Chem,2008,80(2):506.
67 Thanganathan U, Nogami M. Structural and transport properties of mixed phosphotungstic acid/phosphomolybdic acid/SiO2 glass membranes for H2/O2 fuel cells[J]. Chem Mater,2007,19(15):3604.
68 Thanganathan U, Nogami M. Synthesis and characterization of P2O5-SiO2-X (X=phosphotungstic acid) glasses as electrolyte for low temperature H2/O2 fuel cell application[J]. J Membr Sci,2006,280(1):744.
69 Lakshminarayana G, Nogami M. Synthesis and characterization of proton conducting inorganic-organic hybrid nanocomposite membranes based on tetraethoxysilane/trimethylphosphate/3-glycidoxypropyltrimethoxysilane/heteropoly acids[J]. Electrochimica Acta,2009,54(20):4731.
70 Lakshminarayana G, Nogami M. Synthesis and characterization of proton conducting inorganic-organic hybrid nanocomposite membranes based on mixed PWA-PMA-TEOS-GPTMS-H3PO4-APTES for H2/O2 fuel cells[J]. J Phys Chem C,2009,113(32):14540.
71 Ramani V, Kunz H R, Fenton J M. Metal dioxide supported heteropolyacid/Nafion composite membranes for elevated temperature/low relative humidity PEFC operation[J]. J Membr Sci,2006,279(1):506.
72 Mahreni A, Mohamad A B, Kadhum A A H, et al. Nafion/silicon oxide/phosphotungstic acid nanocomposite membrane with enhanced proton conductivity[J]. J Membr Sci,2009,327(1):32.
73 Sacca A, Carbone A, Pedicini R, et al. Phosphotungstic acid supported on a nanopowdered ZrO2 as a filler in Nafion-based membranes for polymer electrolyte fuel cells[J]. Fuel Cells,2008,8(3):225.
74 Shao Z G, Xu H, Li M, et al. Hybrid Nafion-inorganic oxides membrane doped with heteropolyacids for high temperature operation of proton exchange membrane fuel cell[J]. Solid State Ionics,2006,177(7-8):779.
75 Yan X B. Research of proton exchange membrane based on PVA and PVDF in DMFC[D]. Beijing: Beijing Jiaotong University,2006(in Chinese).
阎新宝. 以PVA、PVDF为基材的DMFC用质子交换膜的研究[D]. 北京: 北京交通大学,2006.
76 Mustarelli P, Carollo A, Grandi S, et al. Composite proton-conducting membranes for PEMFCs[J]. Fuel Cells,2007,7(6):441.
77 Vernon D R, Meng F, Dec S F, et al. Synthesis, characterization, and conductivity measurements of hybrid membranes containing a mono-lacunary heteropolyacid for PEM fuel cell applications[J]. J Power Sources,2005,139(1):141.
78 Pu H T, Hou J X, Yang Z L. Studies on preparation and properties of proton exchange membranes based on heteropolyacids doped polyimide/silicon oxide composite[J]. J Funct Mater,2005,36(12):1923(in Chinese).
浦鸿汀, 侯继斅, 杨正龙. 杂多酸掺杂聚酰亚胺/二氧化硅复合质子交换膜的制备和性能研究[J]. 功能材料,2005,36(12):1923.
79 Pu H T, Hou J X, Yang Z L. Preparation and properties of proton exchange membranes based on heteropolyacids doped polyacrylonitrile/silica composites[J]. J Tongji University:Nat Sci,2006,34(11):1519(in Chinese).
浦鸿汀, 侯继斅, 杨正龙. 杂多酸掺杂PAN-SiO2复合质子交换膜的研究[J]. 同济大学学报:自然科学版,2006,34(11):1519.
80 Colicchio I, Wen F, Keul H, et al. Sulfonated poly(ether ether ketone)-silica membranes doped with phosphotungstic acid. Morphology and proton conductivity[J]. J Membr Sci,2009,326(1):45.
81 Gong C L, Zhou Y, Yan L C, et al. Properties of SPES/PWA/SiO2 composite proton exchange membranes[J]. Acta Physico-Chimica Sinica,2010,26(11):2967(in Chinese).
龚春丽, 周毅, 闫礼成, 等. SPES/PWA/SiO2复合质子交换膜的性能[J]. 物理化学学报,2010,26(11):2967.
82 Fu T, Wang J, Ni J, et al. Sulfonated poly(ether ether ketone)/aminopropyltriethoxysilane/phosphotungstic acid hybrid membranes with non-covalent bond: Characterization, thermal stability, and proton conductivity[J]. Solid State Ionics,2008,179(39):2265.
83 Ni J, Zhang G, Zhao C, et al. Crosslinked hybrid membranes based on sulfonated poly(ether ether ketone)/γ-methacryloxypropyltrimethoxysilane/phosphotungstic acid by an in situ sol-gel process for direct methanol fuel cells[J]. J Mater Chem,2010,20(30):6352.
84 Ponce M L, Prado L A S D A, Silva V, et al. Membranes for direct methanol fuel cell based on modified heteropolyacids[J]. Desalination,2004,162(4):383.
85 Kim D J, Lee B M, Nam S Y. Properties of composite membrane based on sulfonated poly(arylene ether sulfone): Effect of functional groups in phosphotungstic acid particles prepared by sol-gel method[J]. Thin Solid Films,2013,546:431.
86 Thanganathan U, Nogami M. Synthesis of mixed composite membranes based polymer/HPA: Electrochemical performances on low temperature PEMFCs[J]. J Membr Sci,2012,411-412:109.
87 Thanganathan U, Parrondo J, Rambabu B. Nanocomposite hybrid membranes containing polyvinyl alcohol or poly(tetramethylene oxi-de) for fuel cell applications[J]. J Appl Electrochem,2011,41(5):617.
88 Malhotra S, Datta R. Membrane-supported nonvolatile acidic electrolytes allow higher temperature operation of proton-exchange membrane fuel cells[J]. J Electrochem Soc,1997,144(2):L23.
89 Ma S C, Lu Y H, Chen Y, et al. Effects of heteropoly acid on stability of proton exchange membrane used in fuel cell[J]. Chinese J Power Sources,2015,39(3):484(in Chinese).
马双春, 鲁伊恒, 陈颖, 等. 杂多酸对燃料电池质子交换膜稳定性的影响[J]. 电源技术,2015,39(3):484.
90 Lu J L, Fang Q H, Li S L, et al. A novel phosphotungstic acid impregnated meso-Nafion multilayer membrane for proton exchange membrane fuel cells[J]. J Membr Sci,2013,427(1):101.
[1] 邹振羽, 刘伟, 李朋娟, 李晓丽. 共活化法制备等级多孔炭材料及其储能性能研究[J]. 材料导报, 2025, 39(3): 23080193-7.
[2] 邢建祥, 杨延朴, 杨集舜, 徐越, 杨廷海, 杨刚. Al掺杂LiNi0.5Co0.2Mn0.3O2材料结构改性及电化学性能研究[J]. 材料导报, 2025, 39(1): 23120197-5.
[3] 官春艳, 郑启泾, 万正环, 杨锦瑜. 溶胶-凝胶法制备Gd4Ga2O9: Dy3+白光发射荧光粉及其性能[J]. 材料导报, 2024, 38(8): 22100218-6.
[4] 唐江城, 赵先兴, 蔡润田, 杨城昊, 池波. Mn离子掺杂Pr0.5Ba0.5Fe0.9Mn0.1O3-δ钙钛矿SOEC阴极电解CO2性能研究[J]. 材料导报, 2024, 38(8): 23040185-6.
[5] 方瑜, 李靖, 孔维超, 周雪, 徐林, 孙冬梅, 唐亚文. 纳米碳片负载Mott-Schottky型Co/Co9S8异质结的原位合成及电催化性能研究[J]. 材料导报, 2024, 38(8): 23040234-7.
[6] 列维茨基·谢尔盖, 曹泽祥, 柯巴·亚历山大, 柯巴·玛丽亚. 激光辐射波长和脉冲寿命对碲化镉熔化阈值的影响[J]. 材料导报, 2024, 38(7): 22120127-6.
[7] 于凯, 王静静, 刘平, 马迅, 张柯, 马凤仓, 李伟. 二硫化钼自润滑涂层性能及制备工艺的研究进展[J]. 材料导报, 2024, 38(7): 22080088-10.
[8] 李兰心, 潘牧, 郭伟. 质子交换膜燃料电池在线监测方法研究进展[J]. 材料导报, 2024, 38(6): 22070018-14.
[9] 陈艳丽, 解自奇, 王梦真, 马子晗, 李姗姗, 颜文超, 李法强. 基于缺陷工程改性富锂层状材料的研究现状[J]. 材料导报, 2024, 38(4): 22070108-9.
[10] 程婷, 陈晨, 张晓, 温明月, 王磊. Mn掺杂Zigzag(8,0)型单壁碳纳米管吸附甲醛分子的密度泛函理论研究[J]. 材料导报, 2024, 38(4): 22040187-6.
[11] 贾宇盟, 史忠祥, 王晶, 李翔. Sm3+掺杂LaOF荧光粉的制备及光学性能[J]. 材料导报, 2024, 38(3): 22100249-7.
[12] 张晓君, 武佳龙, 乔楠, 于大禹, 孙墨杰, 陈景. 氮掺杂木质素基碳量子点在次氯酸根离子检测中的应用[J]. 材料导报, 2024, 38(24): 23050197-5.
[13] 张而耕, 刘江, 蔡远飞, 梁丹丹, 陈强, 周琼, 黄彪. Cr掺杂对TiAlN涂层的择优取向和摩擦性能的影响机理[J]. 材料导报, 2024, 38(24): 23080252-6.
[14] 陈轶思, 张宏图, 王彬彬, 李瑶. ZIF-8衍生氮掺杂多孔碳的制备及其对低浓度煤层气中CH4/N2的吸附分离研究[J]. 材料导报, 2024, 38(24): 23090093-8.
[15] 唐新德, 刘水林, 伍素云, 刘宁, 张春燕, 龚升高. Ti3+/C/N-TiO2@NGQDs纳米复合光催化剂的制备及其可见光催化性能研究[J]. 材料导报, 2024, 38(23): 23090142-6.
[1] Yanzhen WANG, Mingming CHEN, Chengyang WANG. Preparation and Electrochemical Properties Characterization of High-rate SiO2/C Composite Materials[J]. Materials Reports, 2018, 32(3): 357 -361 .
[2] Yimeng XIA, Shuai WU, Feng TAN, Wei LI, Qingmao WEI, Chungang MIN, Xikun YANG. Effect of Anionic Groups of Cobalt Salt on the Electrocatalytic Activity of Co-N-C Catalysts[J]. Materials Reports, 2018, 32(3): 362 -367 .
[3] Qingshun GUAN,Jian LI,Ruyuan SONG,Zhaoyang XU,Weibing WU,Yi JING,Hongqi DAI,Guigan FANG. A Survey on Preparation and Application of Aerogels Based on Nanomaterials[J]. Materials Reports, 2018, 32(3): 384 -390 .
[4] Lijing YANG,Zhengxian LI,Chunliang HUANG,Pei WANG,Jianhua YAO. Producing Hard Material Coatings by Laser-assisted Cold Spray:a Technological Review[J]. Materials Reports, 2018, 32(3): 412 -417 .
[5] Zhiqiang QIAN,Zhijian WU,Shidong WANG,Huifang ZHANG,Haining LIU,Xiushen YE,Quan LI. Research Progress in Preparation of Superhydrophobic Coatings on Magnesium Alloys and Its Application[J]. Materials Reports, 2018, 32(1): 102 -109 .
[6] Wen XI,Zheng CHEN,Shi HU. Research Progress of Deformation Induced Localized Solid-state Amorphization in Nanocrystalline Materials[J]. Materials Reports, 2018, 32(1): 116 -121 .
[7] Xing LIANG, Guohua GAO, Guangming WU. Research Development of Vanadium Oxide Serving as Cathode Materials for Lithium Ion Batteries[J]. Materials Reports, 2018, 32(1): 12 -33 .
[8] Hao ZHANG,Yongde HUANG,Yue GUO,Qingsong LU. Technological and Process Advances in Robotic Friction Stir Welding[J]. Materials Reports, 2018, 32(1): 128 -134 .
[9] Laima LUO, Mengyao XU, Xiang ZAN, Xiaoyong ZHU, Ping LI, Jigui CHENG, Yucheng WU. Progress in Irradiation Damage of Tungsten and Tungsten AlloysUnder Different Irradiation Particles[J]. Materials Reports, 2018, 32(1): 41 -46 .
[10] Fengsen MA,Yan YU,Jie ZHANG,Haibo CHEN. A State-of-the-art Review of Cytotoxicity Evaluation of Biomaterials[J]. Materials Reports, 2018, 32(1): 76 -85 .
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed