Please wait a minute...
《材料导报》期刊社  2018, Vol. 32 Issue (11): 1827-1833    https://doi.org/10.11896/j.issn.1005-023X.2018.11.009
  材料综述 |
基质囊泡及其在骨矿化过程中的作用
洪佳丹,何丽泳,杨慧方,韦路希,庞栋文,邓春林
1 华南理工大学材料科学与工程学院,广州 510641;
2 华南理工大学国家人体组织功能重建工程技术研究中心,广州 510006
Matrix Vesicles and Their Role in Bone Mineralization Process
HONG Jiadan, HE Liyong, YANG Huifang, WEI Luxi, PANG Dongwen, DENG Chunlin
1 School of Materials Science and Engineering, South China University of Technology, Guangzhou 510641;
2 National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006
下载:  全 文 ( PDF ) ( 2371KB ) 
输出:  BibTeX | EndNote (RIS)      
摘要 基质囊泡(Matrix vesicles,MVs)是骨矿物初始形核生长的场所。骨矿化过程中,钙、磷酸根等离子经通道蛋白跨膜运输进入MVs内,当局部浓度达到一定值时,磷酸钙晶体开始沉积。磷酸钙的存在形态包括无定形磷酸钙、磷酸八钙及羟基磷灰石等。MVs可以调节细胞内外基质中的钙和磷酸根离子的稳态及无机磷酸盐/无机焦磷酸盐的比值,提供磷酸钙晶体成核位点,在骨矿化的初始启动过程中发挥重要作用。本文概述了MVs的生物来源、分子组分、提取方法,MVs介导的骨矿化过程,以及近年来利用囊泡作为体外矿化模型模拟MVs矿化过程的研究进展。
服务
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章
洪佳丹
何丽泳
杨慧方
韦路希
庞栋文
邓春林
关键词:  基质囊泡  骨矿化  磷酸钙  仿生矿化    
Abstract: The initial deposition of bone mineral occurs within matrix vesicles (MVs). Calcium phosphate deposition within MVs is triggered by the transmembrane transport and aggregation of calcium & phosphate ions within the MVs lumina through membrane proteins and enzymes when local concentration of calcium & phosphate ions approaches to the certain value. The existence form of calcium phosphate includes amorphous calcium phosphate (ACP), octacalcium phosphate (OCP), and hydroxyapatite (HA). MVs play an important role in initiating bone mineralization process, including controlling calcium & phosphate ions homeostasis, regulating the inorganic phosphate/inorganic pyrophosphate (Pi/PPi) ratio in the intra- and extra-cellular fluid and managing mineral nucleation, etc. This paper introduces the biogenesis, molecular components and extraction method of MVs, illuminates the role and the kinetics of MVs in bone mineralization process. Finally, the research progress of biomimetic mineralization using synthetic phospholipid vesicles as an in vitro mineralization model are discussed.
Key words:  matrix vesicles    bone mineralization    calcium phosphate    biomimetic mineralization
               出版日期:  2018-06-10      发布日期:  2018-07-20
ZTFLH:  TB332  
  Q291  
基金资助: 国家自然科学基金面上项目(51772105;51372086;51472089)
作者简介:  洪佳丹:女,1993年生,硕士研究生,主要从事基质囊泡体外矿化模型研究 E-mail:hongjiadan93@163.com 邓春林:通信作者,男,1969年生,教授,主要从事钙磷材料表面矿化及蛋白质与材料的相互作用研究 E-mail:chldeng@scut.edu.cn
引用本文:    
洪佳丹,何丽泳,杨慧方,韦路希,庞栋文,邓春林. 基质囊泡及其在骨矿化过程中的作用[J]. 《材料导报》期刊社, 2018, 32(11): 1827-1833.
HONG Jiadan, HE Liyong, YANG Huifang, WEI Luxi, PANG Dongwen, DENG Chunlin. Matrix Vesicles and Their Role in Bone Mineralization Process. Materials Reports, 2018, 32(11): 1827-1833.
链接本文:  
http://www.mater-rep.com/CN/10.11896/j.issn.1005-023X.2018.11.009  或          http://www.mater-rep.com/CN/Y2018/V32/I11/1827
1 Anderson H C. Electron microscopic studies of induced cartilage development and calcification[J].The Journal of Cell Biology,1967,35(1):81.
2 Anderson H C. Vesicles associated with calcification in the matrix of epiphyseal cartilage[J].The Journal of Cell Biology,1969,41(1):59.
3 Bonucci E. Fine structure of early cartilage calcification[J].Journal of Ultrastructure Research,1967,20(1):33.
4 Bonucci E. Fine structure and histochemistry of “calcifying globules” in epiphyseal cartilage[J].Zeitschrift fur Zellforschung Und Mikroskopische Anatomie,1970,103(2):192.
5 Wuthier R E, Lipscomb G F. Matrix vesicles: Structure, composition, formation and function in calcification[J].Frontiers in Bioscience,2011,16(1):2812.
6 Yang L, Zhang Y, Cui F Z. Study of two types of mineral-related matrix vesicles in the bone mineralization of zebrafish[J].Materials Review,2005,19(s1):326(in Chinese).
杨亮,张漾,崔福斋.骨材料矿化中两种基质囊泡的研究[J].材料导报,2005,19(专辑Ⅳ):326.
7 崔福斋,等.生物矿化(第2版)[M].北京:清华大学出版社,2012.
8 Boonrungsiman S, Gentleman E, Carzaniga R, et al. The role of intracellular calcium phosphate in osteoblast-mediated bone apatite formation[J].Proceedings of the National Academy of Sciences of the United States of America,2012,109(35):14170.
9 Golub E E. Role of matrix vesicles in biomineralization[J].Biochemical Biophysics Acta,2009,1790(12):1592.
10 Anderson H C. Matrix vesicles and calcification[J].Current Rheumatology Reports,2003,5(3):222.
11 Anderson H C, Garimella R, Tague S E. The role of matrix vesicles in growth plate development and biomineralization[J].Frontiers in Bioscience-Landmark,2005,10:822.
12 Golub E E. Biomineralization and matrix vesicles in biology and pathology[J].Seminars in Immunopathology,2011,33(5):409.
13 Anderson H C. The role of matrix vesicles in physiological and patho-logical calcification[J].Current Opinion in Orthopaedics,2007,18(5):428.
14 Zhou X, Cui Y, Zhou X, et al. Phosphate/pyrophosphate and MV-related proteins in mineralization: Discoveries from mouse models[J].International Journal of Biological Sciences,2012,8(6):778.
15 Ouyang J M, Zhou N. Research progress of biomineralization in liposome systems[J].Journal of Synthetic Crystals,2004,33(6):898(in Chinese).
欧阳健明,周娜.脂质体中生物矿化的研究进展[J].人工晶体学报,2004,33(6):898.
16 Blandford N R, Sauer G R, Genge B R, et al. Modeling of matrix vesicle biomineralization using large unilamellar vesicles[J].Journal of Inorganic Biochemistry,2003,94(1-2):14.
17 Feng Q L, Chen Q H, Wang H, et al. Influence of concentration of calcium ion on controlled precipitation of calcium phosphate within unilamellar lipid vesicles[J].Journal of Crystal Growth,1998,186(1-2):245.
18 Chen W Y, Yang C I, Lin C J, et al. Characterization of the crystallization pathway of calcium phosphate in liposomes[J].Journal of Physical Chemistry C,2014,118(22):12022.
19 Li L, Buchet R, Wu Y. Dimethyl sulfoxide-induced hydroxyapatite formation: A biological model of matrix vesicle nucleation to screen inhibitors of mineralization[J].Analytical Biochemistry,2008,381(1):123.
20 Tagaya M, Yamaguchi T, Shiba K. Preparation of phospholipid vesicle-templated calcium phosphate nanostructures and their cytocompatibility[J].Crystal Growth & Design,2016,16(5):2843.
21 Chu M Q, Liu G J. Preparation and characterization of hydroxyapatite/liposome core-shell nanocomposites[J].Nanotechnology,2005,16(8):1208.
22 Buchet R, Pikula S, Magne D, et al. Isolation and characteristics of matrix vesicles[J].Methods in Molecular Biology,2013,1053:115.
23 Anderson H C. Molecular biology of matrix vesicles[J].Clinical Orthopaedics and Related Research,1995,314(314):266.
24 Hale J E, Wuthier R E. The mechanism of matrix vesicle formation. Studies on the composition of chondrocyte microvilli and on the effects of microfilament-perturbing agents on cellular vesiculation[J].The Journal of Biological Chemistry,1987,262(4):1916.
25 Kardos T B, Hubbard M J. Are matrix vesicles apoptotic bodies?[J].Progress in Clinical and Biological Research,1982,101:45.
26 Anderson H C. Matrix vesicle calcification[J].Federation Procee-dings,1976,35(2):104.
27 Zhen X, Blonder J, Zhou M, et al. Proteomic analysis of extracellular matrix and vesicles[J].Journal of Proteomics,2009,72(1):34.
28 Wuthier R E, Gore S T. Partition of inorganic ions and phospholipids in isolated cell, membrane and matrix vesicle fractions: Evidence for Ca-Pi-acidic phospholipid complexes[J].Calcified Tissue Research,1977,24(2):163.
29 Zhen X, Camalier C E, Nagashima K, et al. Analysis of the extracellular matrix vesicle proteome in mineralizing osteoblasts[J].Journal of Cellular Physiology,2007,210(2):325.
30 Balcerzak M, Malinowska A, Thouverey C, et al. Proteome analysis of matrix vesicles isolated from femurs of chicken embryo[J].Proteomics,2008,8(1):192.
31 Thouverey C, Bechkoff G, Pikula S, et al. Inorganic pyrophosphate as a regulator of hydroxyapatite or calcium pyrophosphate dihydrate mineral deposition by matrix vesicles[J].Osteoarthritis and Cartilage,2009,17(1):64.
32 Ciancaglini P, Yadav M C, Simao A M, et al. Kinetic analysis of substrate utilization by native and TNAP-, NPP1-, or PHOSPHO1-deficient matrix vesicles[J].Journal of Bone and Mineral Research,2010,25(4):716.
33 Wuthier R E. Electrolytes of isolated epiphyseal chondrocytes, matrix vesicles, and extracellular fluid[J].Calcified Tissue Research,1977,23(2):125.
34 Wu L N Y, Genge B R, Wuthier R E. Differential effects of zinc and magnesium ions on mineralization activity of phosphatidylserine calcium phosphate complexes[J].Journal of Inorganic Biochemistry,2009,103(7):948.
35 Sauer G R, Adkisson H D, Genge B R, et al. Regulatory effect of endogenous zinc and inhibitory action of toxic metal ions on calcium accumulation by matrix vesicles in vitro[J].Bone and Mineral,1989,7(3):233.
36 谷振阳,王利,高春记.胞外囊泡的分离与纯化[J].诊断学理论与实践,2014,13(6):640.
37 Heravi F, Balaj L, Alian S, et al. Current methods for the isolation of extracellular vesicles[J].Biological Chemistry,2013,394(10):1253.
38 Sun Z, Huang C B, Song Y J, et al. The comparison among extraction methods of exosomes from T cells of rats[J].Chongqing Medicine,2013,42(29):3512(in Chinese).
孙祯,黄赤兵,宋亚军,等.大鼠T细胞源性exosome提取方法比较[J].重庆医学,2013,42(29):3512.
39 Zhou X Y, Cui Y Z, Luan J, et al. Label-free quantification proteomics reveals novel calcium binding proteins in matrix vesicles isolated from mineralizing Saos-2 cells[J].Bioscience Trends,2013,7(3):144.
40 Zou F, Zhao N R, Fu X L, et al. Enhanced osteogenic differentiation and biomineralization in mouse mesenchymal stromal cells on a beta-TCP robocast scaffold modified with collagen nanofibers[J].RSC Advances,2016,6(28):23588.
41 欧阳健明.生物矿化的基质调控及其仿生应用(第1版)[M].北京:化学工业出版社,2006.
42 Simao A M S, Yadav M C, Ciancaglini P, et al. Proteoliposomes as matrix vesicles’ biomimetics to study the initiation of skeletal mine-ralization[J].Brazilian Journal of Medical and Biological Research,2010,43(3):234.
43 Simao A M, Yadav M C, Narisawa S, et al. Proteoliposomes harboring alkaline phosphatase and nucleotide pyrophosphatase as matrix vesicle biomimetics[J].Journal of Biological Chemistry, 2010,285(10):7598.
44 Kirsch T, Nah H D, Demuth D R, et al. Annexin V-mediated cal-cium flux across membranes is dependent on the lipid composition: Implications for cartilage mineralization[J].Biochemistry,1997,36(11):3359.
45 Kraus B L, Crenshaw M A. Phosphatidic acid liposomes as mineralizing surfaces: Kinetics and energetics[J].Chemical Geology,1996,132(1-4):183.
46 Skrtic D, Eanes E D. Membrane-mediated precipitation of calcium phosphate in model liposomes with matrix vesicle-like lipid composition[J].Bone and Mineral,1992,16(2):109.
47 Nancollas G H, Tsortos A, Zieba A. The nucleation and growth of calcium phosphate crystals at protein and phosphatidylserine liposome surfaces[J].Scanning Microscopy,1996,10(2):499.
[1] 樊凯,卢雪峰,吕凯明,钱坤. C/C复合材料孔隙结构的研究进展[J]. 材料导报, 2019, 33(13): 2184-2190.
[2] 张谦. 不同铺层角含孔复合材料板拉伸性能数值模拟[J]. 材料导报, 2019, 33(z1): 145-148.
[3] 冉涛, 张骞, 黎邦鑫, 刘旸, 李筠连. g-C3N4/泡沫镍整体式光催化剂的构建及光氧化去除NO[J]. 材料导报, 2019, 33(z1): 337-342.
[4] 李茂源, 卢林, 戴珍, 洪义强, 陈为为, 张玉平, 乔英杰. 玻璃微珠和ZrB2改性石英酚醛复合材料的耐烧蚀性能[J]. 材料导报, 2019, 33(8): 1302-1306.
[5] 司雯, 曹明莉, 冯嘉琪. 纤维增强水泥基复合材料的流动性与流变性研究进展[J]. 材料导报, 2019, 33(5): 819-825.
[6] 曹忠亮, 富宏亚, 付云忠, 邵忠喜. 基于自动铺放技术的热塑性复合材料原位固化成型研究进展:热传导行为及层间性能[J]. 材料导报, 2019, 33(5): 894-900.
[7] 高文杰, 杨自春, 李昆锋, 费志方, 陈国兵, 赵爽. 聚酰亚胺纤维增强SiO2气凝胶的制备及表征[J]. 材料导报, 2019, 33(4): 714-718.
[8] 高党鸽, 王平平, 吕斌, 马建中. POSS/聚合物纳米复合材料制备方法的研究进展[J]. 材料导报, 2019, 33(3): 550-557.
[9] 王朝辉, 韩晓霞, 陈姣, 侯荣国, 郑少鹏. 浇注式导电沥青混凝土传导热效果[J]. 材料导报, 2018, 32(22): 3891-3899.
[10] 宋英豪, 薛宝霞, 彭云, 杨雅茹, 白洁, 牛梅. CMSs/APP对PET阻燃性能的影响[J]. 材料导报, 2018, 32(22): 3961-3966.
[11] 高硕洪, 刘敏, 张小锋, 邓春明. 新型陶瓷基复合超疏水涂层的制备及其性能[J]. 材料导报, 2018, 32(20): 3510-3516.
[12] 张翔, 甘春雷, 黎小辉, 张辉, 郑开宏, 农登. 氧化铝纤维含量对陶瓷基摩擦材料性能的影响[J]. 材料导报, 2018, 32(20): 3517-3523.
[13] 费志方, 李昆锋, 杨自春, 高文杰, 陈国兵. APTES交联型聚酰亚胺气凝胶的制备与表征[J]. 材料导报, 2018, 32(20): 3623-3627.
[14] 郑继波, 李雪, 卢公昊, 宁佳林, 黎曦宁. 脱合金法制备Fe基纳米多孔材料及其催化性能[J]. 材料导报, 2018, 32(16): 2828-2831.
[15] 赵爽, 杨自春, 周新贵. 先驱体浸渍裂解结合化学气相渗透工艺下二维半和三维织构SiC/SiC复合材料的结构与性能[J]. 材料导报, 2018, 32(16): 2715-2718.
No Suggested Reading articles found!
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed